Intelligence artificielle

L’apprentissage profond scrute les lésions cérébrales au scanner

Grâce au deep learning, une équipe indienne a mis au point des algorithmes capables de détecter « avec précision » les signes d’un traumatisme crânien sur des images de scanner non injecté. Ils pourraient aider à détecter les patients nécessitant une attention urgente.

icon réservé aux abonnésArticle réservé aux abonnés
Le 25/10/18 à 15:00, mise à jour hier à 14:20 Lecture 2 min.

Les auteurs de l'étude ont collecté les données de 313 318 scanners cérébraux (photo d'illustration).. Par Lipothymia — Anonymised CT scan from my own practice, CC BY-SA 3.0, Lien

Des scientifiques indiens ont développé et testé des algorithmes capables de détecter des signes de traumatisme crânien sur des images de scanner non injecté. Les signes en question sont les cinq types d’hémorragies intracrâniennes (intraparenchymateuse, intraventriculaire, sous-durale, extradurale et sous-arachnoïdienne), les fractures de la voûte crânienne, l’effet de masse et le déplacement de la ligne médiane.

Des radiologues et des experts en IA

Les chercheurs, emmenés par Sasank Chilamkurthy, ont mené une étude prospective dont ils publient les résultats dans la revue The Lancet [1]. L’équipe se compose d’experts en intelligence artificielle de la société indienne Qure.ai, de scientifiques du Centre de recherche avancée en imagerie de New Dehli, de Mustafa Biviji, radiologue au CT & MRI Center de Nagpur et de Norbert Campeau, radiologue à la Mayo Clinic de Rochester.

Une base de données de plus de 300 000 scanners

Pour réaliser leur étude, ils ont collecté les données de 313 318 scan

Il vous reste 72% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Carla Ferrand

Journaliste cheffe de rubrique

Voir la fiche de l’auteur

Bibliographie

  1. Chilamkurthy S., Ghosh R., Tanamala S., « Deep learning algorithms for detection of critical findings in head CT scans : a retrospective study », The Lancet, 11 octobre 2018, publication en ligne. DOI : 10.1016/S0140-6736(18)31645-3

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

13:14

Une revue systématique de 15 études démontre que la bléomycine électrosclérothérapie ((B)EST) est une technique prometteuse pour traiter les anomalies vasculaires, notamment les malformations veineuses et lymphatiques. « Bien que les résultats suggèrent l’efficacité et l’innocuité, l’hétérogénéité du traitement et les résultats à long terme nécessitent des recherches plus approfondies », suggère l’étude.

7:10

Une étude sur 135 revues de radiologie indexées dans le Journal Citation Reports 2024 révèle que les femmes ne représentent que 20,2 % de l’ensemble des rédacteurs, avec une sous-représentation aux niveaux des rédactrices en chef adjointes et de rédactrices en chef. Ces disparités entre les sexes « soulignent la nécessité de politiques transparentes et de réformes structurelles pour promouvoir une plus grande équité », indiquent les auteurs.
05 Nov

16:40

L'entreprise Pulsenmore a annoncé dans un communiqué que la Food and Drug Administration (FDA) américaine a accordé une autorisation de mise sur le marché d'une plateforme d'échographie prénatale qui permet aux futures mères d'effectuer des examens guidés à domicile interprétés par des médecins à distance.

14:26

Des stratégies de gestion des déchets, de décontamination et de traitements des eaux permettraient de réduire l'impact de la pollution environnementale liée au gadolinium (étude).
Docteur Imago

GRATUIT
VOIR