Nouvelles technologies

Un manuel pour le développement de l’intelligence artificielle en radiologie

Des institutions médicales et des sociétés savantes des États-Unis publient un guide pour la recherche en intelligence artificielle appliquée à l’imagerie médicale. Elles espèrent orienter les travaux des chercheurs et les politiques de financement pour accélérer les innovations dans ce domaine.

icon réservé aux abonnésArticle réservé aux abonnés
Le 07/05/19 à 15:00, mise à jour hier à 14:11 Lecture 1 min.

Les auteurs de cette feuille de route espèrent orienter les travaux scientifiques, identifier les lacunes et définir les besoins en matière de recherche en IA appliquée à l'imagerie. D. R.

Le document se veut une référence pour les développeurs d’algorithmes. L’Institut national de la santé (NIH), la Société nord-américaine de radiologie (RSNA), et d’autres organisations scientifiques et académiques étasuniennes ont rédigé une « feuille de route » (roadmap), pour la recherche en intelligence artificielle appliquée en imagerie. Elle est parue le 16 avril 2019 dans la revue Radiology [1].

Identifier les besoins prioritaires

Comme pour le gadolinium en septembre 2018, il s’agit d’orienter les travaux scientifiques, d’identifier les lacunes et de définir les besoins en la matière. « Notre objectif était de fournir un schéma directeur pour les sociétés professionnelles, les financeurs, les laboratoires de recherche et tous les acteurs du secteur pour accélérer la recherche d’innovations en intelligence artificielle qui bénéficieront aux patients », explique son premier auteur Curtis Langloz, professeur de radiologie et d’informatique biomédicale à l’université Stanford, dans un

Il vous reste 43% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Jérome Hoff

Rédacteur en chef adjoint

Voir la fiche de l’auteur

Bibliographie

  1. Langlotz C. P., Allen B., Erickson B. J. et coll., « A Roadmap for Foundational Research on Artificial Intelligence in Medical Imaging : From the 2018 NIH/RSNA/ACR/The Academy Workshop », Radiology, 16 avril 2019. Prépublication en ligne. DOI : 10.1148/radiol.2019190613

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

22 Nov

7:30

Le Sénat a adopté le 19 novembre un amendement gouvernemental au PLFSS 2025 qui prévoit d'exonérer de cotisations pour l'assurance vieillesse les médecins en situation de cumul emploi-retraite qui exercent dans les zones sous-denses. La Caisse autonome de retraite des médecins français (CARMF) s'alarme dans un communiqué des conséquences de cette mesure.

13:31

Un réseau de neurones convolutifs (CNN) a été entraîné à détecter automatiquement les zones floues en mammographie dans des régions pertinentes pour le diagnostic. Ce modèle, s'il était implémenté en pratique clinique, pourrait fournir un retour utile aux MERM afin de réaliser rapidement de meilleures prises de vue qui soient de haute qualité, selon une étude rétrospective.

7:31

Un état de l'art en français sur la biopsie pulmonaire percutanée sous scanner présentant ses indications, ses contre-indications et les bonnes pratiques dans ce domaine a été publié le 14 novembre en accès libre dans le Journal d'imagerie diagnostique et interventionnelle.
Docteur Imago

GRATUIT
VOIR