Imagerie thoracique

Un système de deep learning prédit la survie de patients opérés d’un cancer du poumon

En extrayant des informations de scanners thoraciques préopératoires, des médecins coréens ont testé un modèle de deep learning capable de prédire la survie sans maladie de patients opérés d’un cancer du poumon.

icon réservé aux abonnésArticle réservé aux abonnés
Le 15/06/20 à 7:00, mise à jour hier à 15:14 Lecture 2 min.

Dans leurs constatations, les auteurs indiquent que le statut tabagique et les résultats du modèle d'apprentissage profond « étaient les seuls facteurs de pronostic indépendants de la survie sans maladie des patients après la résection chirurgicale d'un adénocarcinome de stade I ». © Hyungjin Kim et coll. / Radiological Society of North America

Une équipe de chercheurs coréens a développé un modèle d’apprentissage profond basé sur les données de scanner préopératoire qui permettrait de prédire la survie sans maladie de patients atteints d’un adénocarcinome pulmonaire traité par chirurgie. Cette étude rétrospective menée par Hyungjin Kim, radiologue à la faculté de médecine de l’université de Séoul, est parue au mois de mai dans la revue Radiology [1].

Deux sets de données pour l’entraînement et la validation

Pour ces travaux, les chercheurs se sont appuyés sur deux ensembles de données : le premier a été utilisé pour entraîner l’algorithme, le second pour la validation externe. Pour l'ensemble de données 1, les patients éligibles étaient ceux qui avaient subi au moins une lobectomie pour un cancer du poumon. « Au total, 800 patients atteints d'adénocarcinomes pulmonaires réséqués entre janvier 2009 et décembre 2015 ont été identifiés rétrospectivement par une recherche dans les dossiers médicaux électroniques, détaillent les au

Il vous reste 73% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Carla Ferrand

Journaliste cheffe de rubrique

Voir la fiche de l’auteur

Bibliographie

  1. Hyungjin Kim, Jin Mo Goo, Kyung Hee Lee et coll., « Preoperative CT-based Deep Learning Model for Predicting Disease-Free Survival in Patients with Lung Adenocarcinomas », Radiology, 12 mai 2020, publication en ligne. DOI : 10.1148/radiol.2020192764.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

03 Avr

7:31

Le député Thibault Bazin (groupe LR) a déposé le 28 mars un amendement concernant la reconnaissance des Plateaux d’imagerie médicale ambulatoire de proximité (PIMAP) au texte de la proposition de loi d’initiative transpartisane visant à lutter contre les déserts médicaux. L'amendement n°100, examiné par l'Assemblée nationale, propose ainsi que le Gouvernement remette au Parlement « un rapport évaluant l’opportunité d’instituer un statut spécifique pour le plateau d’imagerie médicale ambulatoire de proximité donnant un cadre légal aux cabinets libéraux de radiologie [...] souhaitant maintenir ou améliorer un maillage territorial de proximité ».
02 Avr

15:49

La Fédération de radiologie interventionnelle de la Société française de radiologie (FRI-SFR) a lancé une enquête en ligne pour « faire la lumière sur les freins à l'adhésion au CIRSE (la Société européenne de radiologie cardiovasculaire et interventionnelle, NDLR) chez les radiologues interventionnels français », comme annoncé par Vincent Vidal dans nos colonnes.

12:49

Le consortium ImaSpiiR-X, qui rassemble des acteurs de l'industrie et du milieu académique sous l'égide de l'industriel Trixell, a reçu le soutien de France 2030 à hauteur de 18,2 millions d’euros sur une durée de 60 mois, selon un communiqué du CEA. Cette aide vise à « passer d’une imagerie médicale par rayons X en noir et blanc à une imagerie spectrale en couleur », notamment via le développement de « capteurs plans de nouvelle génération » et d'algorithmes « avancés ».

7:30

Suite à sa fermeture en février, le cabinet de radiologie Boyer à Saint-Céré (46) a transféré son activité et son personnel à l'hôpital local, informe La Dépêche.
Docteur Imago

GRATUIT
VOIR