Intelligence artificielle

Chat GPT-4 est efficace pour détecter les erreurs dans les comptes rendus

Dans une étude publiée dans Radiology, des chercheurs allemands ont mis en avant le potentiel de Chat GPT-4 pour détecter les erreurs dans les comptes rendus de radiologie. Ceci pourrait permettre d'améliorer le flux et la charge de travail des radiologues tout en optimisant les coûts.

icon réservé aux abonnésArticle réservé aux abonnés
Le 05/08/24 à 7:00 Lecture 1 min.

« Nos résultats démontrent que les performances de relecture de GPT-4 sont comparables à celles des lecteurs humains, indépendamment de l’expérience clinique de ces derniers », écrivent les chercheurs (photo d'illustration). © Solenn Duplessy

Une étude publiée dans Radiology a évalué les performances et les capacités avancées de traitement de texte des grands modèles de langage, tels que Chat GPT-4 (Open AI), pour aider à générer des comptes rendus [1]. Les chercheurs ont analysé son efficacité dans l'identification des erreurs courantes contenues dans ces comptes rendus, « en mettant l’accent sur les performances, le temps et la rentabilité », précisent-ils.

Détection de 150 erreurs dans 200 rapports

Pour ce faire, la performance de GPT-4 a été mesurée dans la détection de 150 erreurs délibérément introduites par un interne en radiologie dans 200 comptes rendus d'examens de radiographie et d'imagerie en coupes compilés entre juin 2023 et décembre 2023, dans un hôpital universitaire de Cologne en Allemagne. Cinq catégories d’erreurs ont été insérées : omission, insertion, orthographe, confusion latérale et autres erreurs. Cette performance a ensuite été comparée à celle de six radiologues de niveaux d’expérience différent

Il vous reste 62% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Solenn Duplessy

Voir la fiche de l’auteur

Bibliographie

  1. Gertz R. J., Dratsch T., Bunck A. C. et al, « Potential of GPT-4 for Detecting Errors in Radiology Reports: Implications for Reporting Accuracy », Radiology, avril 2024, vol. 311, n° 1. DOI : 10.1148/radiol.232714

Discussion

Aucun commentaire

Laisser un commentaire

Le fil Docteur Imago

12 Fév

15:09

13:16

Comparé au rapport en texte libre, la compte rendu structuré améliore l’efficacité des radiologues lors de la radiographie thoracique en dirigeant l’attention visuelle vers l’image, tandis que le compte rendu prérempli par IA améliore la précision du diagnostic, conclut une étude publiée dans Radiology.

7:11

Le LLM polyvalent (Cohere Command-A) évalué dans une étude a démontré de solides performances dans l’automatisation de la stadification FIGO pour les cancers du col de l’utérus et de l’endomètre à partir des rapports IRM. Leur intégration pourrait réduire la charge de travail des radiologues.
11 Fév

16:09

Median Technologies a obtenu l’autorisation 510(k) de la FDA pour son dispositif médical eyonis® LCS.  Basé sur l’IA. Celui-ci vise à transformer le dépistage du cancer du poumon en aidant à son diagnostic à des stages précoces et curables et ce, en limitant les examens de suivi inutiles et les faux positifs.
Docteur Imago

GRATUIT
VOIR