Intelligence artificielle

Chat GPT-4 est efficace pour détecter les erreurs dans les comptes rendus

Dans une étude publiée dans Radiology, des chercheurs allemands ont mis en avant le potentiel de Chat GPT-4 pour détecter les erreurs dans les comptes rendus de radiologie. Ceci pourrait permettre d'améliorer le flux et la charge de travail des radiologues tout en optimisant les coûts.

icon réservé aux abonnésArticle réservé aux abonnés
Le 05/08/24 à 7:00 Lecture 1 min.

« Nos résultats démontrent que les performances de relecture de GPT-4 sont comparables à celles des lecteurs humains, indépendamment de l’expérience clinique de ces derniers », écrivent les chercheurs (photo d'illustration). © Solenn Duplessy

Une étude publiée dans Radiology a évalué les performances et les capacités avancées de traitement de texte des grands modèles de langage, tels que Chat GPT-4 (Open AI), pour aider à générer des comptes rendus [1]. Les chercheurs ont analysé son efficacité dans l'identification des erreurs courantes contenues dans ces comptes rendus, « en mettant l’accent sur les performances, le temps et la rentabilité », précisent-ils.

Détection de 150 erreurs dans 200 rapports

Pour ce faire, la performance de GPT-4 a été mesurée dans la détection de 150 erreurs délibérément introduites par un interne en radiologie dans 200 comptes rendus d'examens de radiographie et d'imagerie en coupes compilés entre juin 2023 et décembre 2023, dans un hôpital universitaire de Cologne en Allemagne. Cinq catégories d’erreurs ont été insérées : omission, insertion, orthographe, confusion latérale et autres erreurs. Cette performance a ensuite été comparée à celle de six radiologues de niveaux d’expérience différent

Il vous reste 62% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

OFFRE DÉCOUVERTE

11€

pendant 1 mois
puis 23 €/mois

S’abonner à Docteur Imago

Auteurs

Solenn Duplessy

Bibliographie

  1. Gertz R. J., Dratsch T., Bunck A. C. et al, « Potential of GPT-4 for Detecting Errors in Radiology Reports: Implications for Reporting Accuracy », Radiology, avril 2024, vol. 311, n° 1. DOI : 10.1148/radiol.232714

Discussion

Aucun commentaire

Laisser un commentaire

Le fil Docteur Imago

15 Oct

7:30

Un examen de TEP-IRM au [18F]FDG incluant une IRM mammaire est faisable et peut être envisagé en pratique quotidienne pour l'évaluation locorégionale et distante du cancer du sein, conclut une étude présentée dans Insights into Imaging.
14 Oct

15:49

Le CNOM a recensé 1 581 signalements d'incidents et d'agressions à l'encontre des médecins en 2023, contre 1 244 en 2022, soit une augmentation de 27 %.

13:47

Une analyse intelligence artificielle du coroscanner réalisé avant un remplacement percutané de la valve aortique (TAVI) a permis de prédire avec une précision similaire à celle des mesures manuelles la survenue d'événements cardiovasculaires indésirables majeurs chez les patients. Étude.

7:33

Le projet européen UMBRELLA, partenariat public privé codirigé par l'institut de recherche espagnol Vall d'Hebron et Siemens Healthineers, veut améliorer la prise en charge des AVC en fédérant des données, notamment pour développer et valider des protocoles de prise en charge et des algorithmes d'intelligence artificielle.
Docteur Imago

GRATUIT
VOIR