Analyse de cas cliniques

Des LLM plus précis qu’un étudiant en médecine mais moins que des radiologues juniors

icon réservé aux abonnésArticle réservé aux abonnés
Le 03/02/25 à 7:00

Les auteurs de l’étude ont par conséquent constaté que GPT-4o était le plus précis des LLM, avec une précision de 59,6, surpassant un étudiant en médecine, mais n'a pas surpassé les professeurs juniors ou le radiologue en formation. (Photo d'illustration).

Les grands modèles de langage multimodaux (LLM), capables de traiter des données textuelles et visuelles, sont de plus en plus expérimentés dans le domaine de la radiologie. Dans une étude parue dans la revue Radiology, des chercheurs de l’Université Yonsei de Séoul, en Corée du Sud, ont évalué la précision de plusieurs d'entre eux face à celle de lecteurs humains, ayant différents niveaux d’expérience, dans des cas cliniques issus d'articles de la revue New England Journal of Medicine (NEJM), publiés de 2005 à 2024.

272 cas test avec des données textuelles et visuelles

Les LLM, dont GPT-4V, GPT-4 Omni (GPT-4o), DeepMind Gemini 1.5 Pro et Claude 3, ont été mis à l'épreuve sur 272 cas, avec des données textuelles et visuelles. Le groupe de lecteurs humains incluait sept radiologues juniors, deux cliniciens, un radiologue en formation et un étudiant en médecine, en aveugle face aux réponses publiées.

GPT-4o plus précis qu’un étudiant en médecine

Premier constat : GPT-4o était le plus

Il vous reste 49% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Solenn Duplessy

Voir la fiche de l’auteur

Bibliographie

    Suh PS, Shim WH, Suh CH, et al (2024) Comparing Large Language Model and Human Reader Accuracy with New England Journal of Medicine Image Challenge Case Image Inputs. Radiology 313:e241668. https://doi.org/10.1148/radiol.241668

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

24 Nov

7:36

La reconstruction par apprentissage profond est associée à une performance non inférieure à supérieure comparée aux autres techniques de reconstruction en scanner thoracique, conclut une méta-analyse.
21 Nov

15:34

Des chercheurs ont examiné l’association entre la charge allostatique (AL), un indicateur de dysrégulation physiologique liée au stress, et la présence de pathologie maligne lors de biopsies mammaires guidées par imagerie. Les résultats suggèrent qu’une AL plus élevée est liée à un risque accru de pathologie maligne, ce qui pourrait guider des stratégies de dépistage personnalisées, indique une étude publiée dans JACR.

13:17

L’IRM rapide avec la reconstruction par apprentissage profond (DLR) améliore la qualité d’image et la précision diagnostique pour l’appendicite complexe par rapport à l’IRM non DLR et à la tomographie par contraste, offrant une alternative précieuse pour les patients sensibles aux radiations. (Étude).

7:09

Une étude évaluant plusieurs grands modèles de langage a montré que le modèle OpenAI o3 obtenait la meilleure précision à l’examen national japonais des techniciens en radiologie, atteignant 90 % de réussite.
Docteur Imago

GRATUIT
VOIR