Analyse de cas cliniques

Des LLM plus précis qu’un étudiant en médecine mais moins que des radiologues juniors

icon réservé aux abonnésArticle réservé aux abonnés
Le 03/02/25 à 7:00

Les auteurs de l’étude ont par conséquent constaté que GPT-4o était le plus précis des LLM, avec une précision de 59,6, surpassant un étudiant en médecine, mais n'a pas surpassé les professeurs juniors ou le radiologue en formation. (Photo d'illustration).

Les grands modèles de langage multimodaux (LLM), capables de traiter des données textuelles et visuelles, sont de plus en plus expérimentés dans le domaine de la radiologie. Dans une étude parue dans la revue Radiology, des chercheurs de l’Université Yonsei de Séoul, en Corée du Sud, ont évalué la précision de plusieurs d'entre eux face à celle de lecteurs humains, ayant différents niveaux d’expérience, dans des cas cliniques issus d'articles de la revue New England Journal of Medicine (NEJM), publiés de 2005 à 2024.

272 cas test avec des données textuelles et visuelles

Les LLM, dont GPT-4V, GPT-4 Omni (GPT-4o), DeepMind Gemini 1.5 Pro et Claude 3, ont été mis à l'épreuve sur 272 cas, avec des données textuelles et visuelles. Le groupe de lecteurs humains incluait sept radiologues juniors, deux cliniciens, un radiologue en formation et un étudiant en médecine, en aveugle face aux réponses publiées.

GPT-4o plus précis qu’un étudiant en médecine

Premier constat : GPT-4o était le plus

Il vous reste 49% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Solenn Duplessy

Voir la fiche de l’auteur

Bibliographie

    Suh PS, Shim WH, Suh CH, et al (2024) Comparing Large Language Model and Human Reader Accuracy with New England Journal of Medicine Image Challenge Case Image Inputs. Radiology 313:e241668. https://doi.org/10.1148/radiol.241668

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

12 Fév

15:09

13:16

Comparé au rapport en texte libre, la compte rendu structuré améliore l’efficacité des radiologues lors de la radiographie thoracique en dirigeant l’attention visuelle vers l’image, tandis que le compte rendu prérempli par IA améliore la précision du diagnostic, conclut une étude publiée dans Radiology.

7:11

Le LLM polyvalent (Cohere Command-A) évalué dans une étude a démontré de solides performances dans l’automatisation de la stadification FIGO pour les cancers du col de l’utérus et de l’endomètre à partir des rapports IRM. Leur intégration pourrait réduire la charge de travail des radiologues.
11 Fév

16:09

Median Technologies a obtenu l’autorisation 510(k) de la FDA pour son dispositif médical eyonis® LCS.  Basé sur l’IA. Celui-ci vise à transformer le dépistage du cancer du poumon en aidant à son diagnostic à des stages précoces et curables et ce, en limitant les examens de suivi inutiles et les faux positifs.
Docteur Imago

GRATUIT
VOIR