Équité 2.0

Différentes pistes d’amélioration de l’équité algorithmique en médecine

Pour améliorer l'équité algorithmique en santé, une revue d’études étasunienne suggère de développer l'apprentissage fédéré, l'explicabilité des modèles d'intelligence artificielle ou encore de nouveaux jeux de données prenant davantage en compte les minorités traditionnellement sous-représentées en recherche médicale.

icon réservé aux abonnésArticle réservé aux abonnés
Le 27/09/23 à 15:00 Lecture 3 min.

L'équité algorithmique, ou algorithmic fairness, est un concept « utilisé pour définir, quantifier et réduire les inégalités de prédictions issues de l'apprentissage automatique qui peuvent causer un tort disproportionné à des individus ou à des groupes d'individus ». D R

Alors que l'usage de l'intelligence artificielle (IA) se généralise en radiologie et dans d'autres spécialités médicales, les médecins doivent s'assurer que les logiciels déployés respectent l'équité algorithmique, selon un article de mise en perspective publié par des chercheurs américains le 28 juin 2023 dans Nature Biomedical Engineering [1]. Les auteurs commencent par rappeler ce qu'ils entendent par l'équité algorithmique, ou algorithmic fairness en anglais : il s'agit d'un concept « utilisé pour définir, quantifier et réduire les inégalités de prédictions issues de l'apprentissage automatique qui peuvent causer un tort disproportionné à des individus ou à des groupes d'individus ».

Le défi de la prise en compte des données médicales sensibles

Algorithme à l'efficacité variable suivant le groupe ethnique, détermination possible de l'origine des patients... Les raisons pour lesquelles l'IA peut causer un tort en santé sont nombreuses, et s'additionnent aux autres disparités de sa

Il vous reste 80% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Discussion

Aucun commentaire

Laisser un commentaire

Le fil Docteur Imago

09 Jan

16:11

Une étude publiée dans BMC Urology a évalué la capacité de plusieurs grands modèles de langage à classer des comptes rendus d’IRM de la prostate selon le système PI-RADS v2.1. Le modèle GPT-o1 montre la meilleure concordance avec les radiologues, mais tous les modèles présentent des limites pour les lésions PI-RADS 3.

13:08

Chez les patients atteints d'occlusion aiguë des grands vaisseaux (LVO) de l’ACM et de sténose de l’artère intracrânienne sous-jacente traitée par stent de secours, l’administration préalable d’une thrombolyse intraveineuse n’est pas associée à une augmentation du risque d’hémorragie intracrânienne symptomatique ni de la mortalité à 90 jours (étude).

7:30

Un modèle de classification ternaire radiologique a obtenu des performances diagnostiques « excellentes » pour différencier les lésions pulmonaires sur des images de scanner, selon des résultats publiés dans Radiology.
08 Jan

15:17

Des chercheurs ont introduit un nouveau marqueur tumoral IRM appelé « signe sombre-clair-obscur » et suggèrent qu’il peut aider à prédire la métastase des ganglions lymphatiques chez les patients atteints d’un cancer rectal, selon une étude publiée dans Radiology.
Docteur Imago

GRATUIT
VOIR