Équité 2.0

Différentes pistes d’amélioration de l’équité algorithmique en médecine

Pour améliorer l'équité algorithmique en santé, une revue d’études étasunienne suggère de développer l'apprentissage fédéré, l'explicabilité des modèles d'intelligence artificielle ou encore de nouveaux jeux de données prenant davantage en compte les minorités traditionnellement sous-représentées en recherche médicale.

icon réservé aux abonnésArticle réservé aux abonnés
Le 27/09/23 à 15:00 Lecture 3 min.

L'équité algorithmique, ou algorithmic fairness, est un concept « utilisé pour définir, quantifier et réduire les inégalités de prédictions issues de l'apprentissage automatique qui peuvent causer un tort disproportionné à des individus ou à des groupes d'individus ». D R

Alors que l'usage de l'intelligence artificielle (IA) se généralise en radiologie et dans d'autres spécialités médicales, les médecins doivent s'assurer que les logiciels déployés respectent l'équité algorithmique, selon un article de mise en perspective publié par des chercheurs américains le 28 juin 2023 dans Nature Biomedical Engineering [1]. Les auteurs commencent par rappeler ce qu'ils entendent par l'équité algorithmique, ou algorithmic fairness en anglais : il s'agit d'un concept « utilisé pour définir, quantifier et réduire les inégalités de prédictions issues de l'apprentissage automatique qui peuvent causer un tort disproportionné à des individus ou à des groupes d'individus ».

Le défi de la prise en compte des données médicales sensibles

Algorithme à l'efficacité variable suivant le groupe ethnique, détermination possible de l'origine des patients... Les raisons pour lesquelles l'IA peut causer un tort en santé sont nombreuses, et s'additionnent aux autres disparités de sa

Il vous reste 80% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

François Mallordy

Journaliste rédacteur spécialisé

Voir la fiche de l’auteur

Discussion

Aucun commentaire

Laisser un commentaire

Le fil Docteur Imago

09 Fév

16:06

Chez les participantes de l'essai canadien Tomosynthesis Mammographic Imaging Screening Trial âgées de 40 à 44 ans et de plus de 75 ans, le dépistage du cancer du sein par tomosynthèse a donné des performances plus favorables que le dépistage par mammographie. Étude.

14:02

Planmed annonce le marquage CE et la commercialisation de XFI®, son scanner cone-beam (CBCT) pour l'imagerie corps entier en charge. La certification concerne l'imagerie des extrémités, de la tête et du cou, précise un communiqué.

7:30

Un essai randomisé contrôlé sur 60 patientes atteintes d'adénomyose démontre que l'embolisation des artères utérines résulte en une résolution plus complète de la douleur pelvienne chronique et des saignements que le traitement par diénogest. Étude.
06 Fév

16:08

Des chercheurs ont développé et validé un modèle de deep learning entièrement automatisé pour détecter et mesurer les masses surrénaliennes sur des scanners abdominaux injectés. Le modèle a le potentiel d’améliorer les taux de détection des lésions et de faciliter leur prise en charge précoce, indique l'étude.
Docteur Imago

GRATUIT
VOIR