Aide à la décision

La façon dont l’IA justifie ses résultats influencerait les performances diagnostiques du médecin

Une étude a comparé les performances diagnostiques de médecins assistés par l’IA en fonction du niveau d’exactitude et de la façon dont le l’outil justifiait ses prédictions. Leur précision était supérieure quand l’outil décrivait les données qui avaient guidé son raisonnement.

icon réservé aux abonnésArticle réservé aux abonnés
Le 01/12/24 à 15:00 Lecture 3 min.

Quand le conseil de l’IA était correct, la précision diagnostique des médecins était de 92,8 % (± 0.62) avec une explication locale et de 85,3 % (± 0.85) avec une explication globale (photo d'illsutration). D. R.

La précision diagnostique d’un médecin qui utilise un outil d’intelligence artificielle pour l’interprétation des radiographies thoraciques varie en fonction de la façon dont cet outil explique son raisonnement, selon une étude présentée dans Radiology [1].

Huit radiographies avec un conseil d’une IA simulée

Ses auteurs ont rassemblé un panel de 220 médecins, dont 132 radiologues, auxquels ils ont soumis une série de huit radiographies thoraciques (vues frontale et latérale quand elle était disponible), issues de la base de données de l’hôpital Beth Israel Deaconess de Boston, Massachusetts. Chaque examen s’accompagnait d’une suggestion émise par un assistant IA simulé, dont les performances étaient comparables à celles d’un radiologue expert. Les conseils étaient corrects dans six cas sur huit, avec un niveau randomisé de confiance affichée.

Explication locale et globale

Cette IA virtuelle justifiait son conseil de selon deux modalités choisies de façon aléatoire : l’explication «

Il vous reste 75% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Jérome Hoff

Rédacteur en chef adjoint BOM Presse Clichy

Voir la fiche de l’auteur

Bibliographie

    Prinster D, Mahmood A, Saria S, et al (2024) Care to Explain? AI Explanation Types Differentially Impact Chest Radiograph Diagnostic Performance and Physician Trust in AI. Radiology 313:e233261. https://doi.org/10.1148/radiol.233261

Discussion

Aucun commentaire

Laisser un commentaire

Le fil Docteur Imago

12 Jan

16:00

Des modèles de langage ajustés avec précision à l'aide d'informations cliniques et radiologiques ont prédit avec exactitude les comptes rendus les plus prioritaires, dans le cadre d'une étude présentée dans European Radiology.

13:17

Une première étude chez l'homme confirme la sécurité et le profil pharmacocinétique favorable de l'imagerie TEP avec le radiotraceur 64Cu-Macrin dans la prise en charge du cancer et de la sarcoïdose.

7:30

Les marqueurs radiomiques hypothalamiques dérivés de l'IRM pondérée T1 et extraits associés à des caractéristiques cliniques offrent une approche d'exploration prometteuse pour prédire l'apnée obstructive du sommeil. Étude.
09 Jan

16:11

Une étude publiée dans BMC Urology a évalué la capacité de plusieurs grands modèles de langage à classer des comptes rendus d’IRM de la prostate selon le système PI-RADS v2.1. Le modèle GPT-o1 montre la meilleure concordance avec les radiologues, mais tous les modèles présentent des limites pour les lésions PI-RADS 3.
Docteur Imago

GRATUIT
VOIR