Aide à la décision

La façon dont l’IA justifie ses résultats influencerait les performances diagnostiques du médecin

Une étude a comparé les performances diagnostiques de médecins assistés par l’IA en fonction du niveau d’exactitude et de la façon dont le l’outil justifiait ses prédictions. Leur précision était supérieure quand l’outil décrivait les données qui avaient guidé son raisonnement.

icon réservé aux abonnésArticle réservé aux abonnés
Le 01/12/24 à 15:00 Lecture 3 min.

Quand le conseil de l’IA était correct, la précision diagnostique des médecins était de 92,8 % (± 0.62) avec une explication locale et de 85,3 % (± 0.85) avec une explication globale (photo d'illsutration). D. R.

La précision diagnostique d’un médecin qui utilise un outil d’intelligence artificielle pour l’interprétation des radiographies thoraciques varie en fonction de la façon dont cet outil explique son raisonnement, selon une étude présentée dans Radiology [1].

Huit radiographies avec un conseil d’une IA simulée

Ses auteurs ont rassemblé un panel de 220 médecins, dont 132 radiologues, auxquels ils ont soumis une série de huit radiographies thoraciques (vues frontale et latérale quand elle était disponible), issues de la base de données de l’hôpital Beth Israel Deaconess de Boston, Massachusetts. Chaque examen s’accompagnait d’une suggestion émise par un assistant IA simulé, dont les performances étaient comparables à celles d’un radiologue expert. Les conseils étaient corrects dans six cas sur huit, avec un niveau randomisé de confiance affichée.

Explication locale et globale

Cette IA virtuelle justifiait son conseil de selon deux modalités choisies de façon aléatoire : l’explication «

Il vous reste 75% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Jérome Hoff

Rédacteur en chef adjoint

Voir la fiche de l’auteur

Bibliographie

    Prinster D, Mahmood A, Saria S, et al (2024) Care to Explain? AI Explanation Types Differentially Impact Chest Radiograph Diagnostic Performance and Physician Trust in AI. Radiology 313:e233261. https://doi.org/10.1148/radiol.233261

Discussion

Aucun commentaire

Laisser un commentaire

Le fil Docteur Imago

21 Fév

13:40

Selon une étude publiée dans Radiology, un algorithme d’apprentissage profond disponible dans le commerce peut permettre des examens IRM de l’épaule de bonne qualité en sept minutes.

7:37

Le parlement a adopté définitivement le budget 2025 de la Sécurité sociale ce 17 février. Il prévoit une hausse des dépenses d’Assurance maladie de 3,4 %, pour atteindre un montant de 265 milliards d’euros.
20 Fév

16:01

L’imagerie des paramètres d’atténuation par ultrasons peut être utilisée pour le dépistage clinique afin d’évaluer la prévalence de la MASLD chez les patients en surpoids ou obèses et de suivre de manière dynamique la progression de la maladie, conclut une étude publiée dans Clinical radiology.

13:31

Le modèle de langage appelé Axpert démontre un potentiel de marquage automatique de l’entérocolite nécrosante sur les comptes-rendus de radiographie abdominale infantile. Cette méthode de marquage peut ainsi servir de cadre pour d’autres modalités d’imagerie et maladies chez les enfants, et les maladies rares chez l’adulte, suggère une étude publiée dans JAMIA Open.
Docteur Imago

GRATUIT
VOIR