Une étude multicentrique rétrospective française s’est intéressée aux performances de l'apprentissage profond (deep learning) pour mesurer et segmenter les trabéculations en IRM cardiaque. L’équipe de recherche a publié ses travaux au mois de novembre dans Radiology : Artificial Intelligence [1].
Un besoin d’outil de précision
Les chercheurs sont partis du constat que la mesure des trabéculations cardiaques devait s’appuyer sur des critères précis afin de mieux faire la part des choses : « À l’heure actuelle, quand on interprète une IRM cardiaque, on dit de façon un peu subjective que le patient présente des trabéculations, sans véritablement déterminer s’il y a un excès ou si cela reste dans les limites de la normale », expose Axel Bartoli, radiologue à la Timone (Assistance publique - Hôpitaux de Marseille) et auteur principal de l’étude. Ils ont donc développé un algorithme de deep learning pour opérer des segmentations et des mesures automatiques, et dépasser l'évaluation visuelle :
Discussion
Aucun commentaire
Commenter cet article