Intelligence artificielle

L’association radiologues – apprentissage profond montre son potentiel dans la détection du cancer du sein

Dans une étude rétrospective britannique, la combinaison d’algorithmes d’apprentissage profond et de lecteurs humains a permis d'obtenir une sensibilité non inférieure et une spécificité supérieure à celle d'une double lecture par des radiologues des mammographies de dépistage.

icon réservé aux abonnésArticle réservé aux abonnés
Le 13/12/24 à 15:00 Lecture 1 min.

Pour cette étude, trois algorithmes commercialisés (DL-1, DL-2 et DL-3) ont été évalués rétrospectivement de janvier 2022 à juin 2022, et des mammographies numériques de deux constructeurs distincts ont été recueillies sur deux sites britanniques pendant un an. © S. E. Hickman et coll. | RSNA 2024

Au Royaume-Uni, des radiologues ont évalué et comparé les performances de trois algorithmes d’apprentissage profond utilisés en lecteur unique de mammographies et utilisés conjointement avec un lecteur humain dans un système de double lecture. Leurs résultats sont parus au mois de novembre dans la revue Radiology [1].

Plus de 26 000 cas

Pour cette étude, trois algorithmes commercialisés (DL-1, DL-2 et DL-3) ont été étudiés rétrospectivement de janvier 2022 à juin 2022, et des mammographies numériques de deux constructeurs distincts ont été recueillies sur deux sites britanniques pendant un an (2017). Au total, 26 722 dossiers de mammographies de dépistage (âge médian de la cohorte : 59 ans) ont été inclus. Les cas comprenaient 332 cancers détectés par dépistage, 174 cancers de l’intervalle et 254 cancers détectés au cycle suivant.

L’IA non inférieure à l’humain

« Deux des trois algorithmes d'apprentissage profond ont atteint une sensibilité non inférieure (DL-1 : 64,8 % [328 sur 50

Il vous reste 60% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Carla Ferrand

Journaliste cheffe de rubrique

Voir la fiche de l’auteur

Bibliographie

    Hickman SE, Payne NR, Black RT, et al (2024) Deep Learning Algorithms for Breast Cancer Detection in a UK Screening Cohort: As Stand-alone Readers and Combined with Human Readers. Radiology 313:e233147. https://doi.org/10.1148/radiol.233147

Discussion

Aucun commentaire

Laisser un commentaire

Le fil Docteur Imago

23 Déc

7:18

L'utilisation de l'analyse quantitative sur les examens de mammographie et d'échographie améliore la spécificité du diagnostic de cancer du sein et pourrait permettre de réduire le nombre de biopsies inutiles, selon une étude présentée dans Radiography.
22 Déc

16:04

Varian, filiale de Siemens Healthineers et l'entreprise pharmaceutique Telix Pharmaceutical Limited, annoncent une collaboration stratégique dans le domaine des traitements par radiopharmaceutiques et radiothérapie.

13:06

La Société française de radiologie annonce le décès du professeur Thierry de Baere, chef du service de radiologie interventionnelle du centre de lutte contre le cancer Gustave-Roussy (94). Nous adressons nos condoléances à sa famille et ses proches.

7:13

Une étude publiée dans European Journal of Nuclear Medicine and Molecular Imaging montre que l’évaluation de la réponse thérapeutique du carcinome hépatocellulaire (CHC) par 68Ga-PSMA PET offre une concordance interprétative presque parfaite entre lecteurs, surpassant nettement les critères CT/MRI, notamment après immunothérapie. Ces résultats ouvrent la voie à la validation de PSMA PET comme outil fiable pour guider la prise en charge et orienter les essais thérapeutiques futurs.
Docteur Imago

GRATUIT
VOIR