Dépistage du cancer du poumon

Le deep learning pour détecter les nodules pulmonaires face à plusieurs défis

Des chercheurs chinois ont réalisé une revue systématique d'études axées sur la détection et la segmentation du cancer du poumon ou des nodules pulmonaires à l’aide de techniques d’apprentissage profond. Ils relèvent la nécessité de modèles diversifiés, de validation externe, d’efficacité et de transparence,

icon réservé aux abonnésArticle réservé aux abonnés
Le 06/08/24 à 7:00 Lecture 2 min.

Les algorithmes d’apprentissage profond ont ainsi démontré leur efficacité dans la détection et l’annotation des nodules du cancer du poumon de manière plus rapide que des experts humains. (photo d'illustration) D. R.

Principale cause de mortalité lié au cancer au monde, le cancer du poumon est responsable de 18,4 % de tous les décès par cancer. Dans ce contexte, la détection précoce et la segmentation précise des nodules pulmonaires s’avèrent cruciales pour diagnostiquer et traiter avec précision cette maladie. Pourtant les nodules pulmonaires, qui sont souvent un indicateur précoce du cancer du poumon, n’indiquent pas toujours une tumeur maligne, indique une étude parue dans European Radiology.

Comparer les méthodes de détection

Des chercheurs de l’école de médecine de l'université du Zhejiang en Chine ont élaboré une revue systématique afin de comparer les méthodes de détection et de segmentation des nodules pulmonaires en utilisant des techniques d’apprentissage profond. Pour ce faire, le groupe a analysé neuf articles publiées entre 2019 et 2023 provenant de bases de données de premier plan tels que PubMed, Embase, Web of Science Core Collection et Cochrane Library. Les données de chaque art

Il vous reste 66% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Solenn Duplessy

Voir la fiche de l’auteur

Discussion

Aucun commentaire

Laisser un commentaire

Le fil Docteur Imago

19 Jan

13:08

Un algorithme basé sur un modèle de diffusion améliore efficacement la qualité de l'image et la fiabilité du diagnostic sans compromettre la détection des lésions, ce qui confirme son potentiel pour une utilisation clinique dans les scanners cérébraux portables. Étude.

7:30

Chez des patients atteints d'un AVC causé par une occlusion légère des grands vaisseaux, une étude rétrospective sur trois centres n'a pas constaté de différence de résultats à 12 mois entre ceux traités par thrombectomie et ceux traités selon les « meilleures pratiques médicales ».
16 Jan

15:29

Un tissu mammaire dense réduit la performance de la tomosynthèse mammaire numérique, selon une étude publiée dans Academic Radiology. « Ces résultats soulignent la nécessité de rapporter et de prendre en compte la densité mammaire dans les recommandations de dépistage. »

13:27

Vidi Capital finalise son rapprochement avec le groupe IMAC à Cholet, qui rejoint le réseau. Cette opération porte à 110 le nombre de médecins en exercice, répartis au sein de sept entités et IMAC devient ainsi le deuxième groupe des Pays-de-la-Loire à s’adosser à Vidi Capital, après Vidi – Rad’Yon, annonce un communiqué de presse.

7:13

Bayer a annoncé la conclusion d’accords définitifs pour l’acquisition auprès d’Attralus de deux agents d’imagerie moléculaire expérimentaux, AT-01 et AT-05, destinés au diagnostic de l’amyloïdose cardiaque. Cette opération stratégique renforce la position de Bayer dans l’imagerie moléculaire et s’inscrit dans le développement de sa stratégie de cardiologie de précision, annonce un communiqué.
Docteur Imago

GRATUIT
VOIR