Biais d’automatisation 

Les erreurs de l’IA retentissent sur les performances des radiologues en mammographie

Une suggestion incorrecte fournie par un système d’aide à la décision basé sur l’intelligence artificielle pourrait altérer de façon significative la précision des radiologues lors de la lecture des mammographies, notamment des moins expérimentés, selon une étude publiée dans Radiology.

icon réservé aux abonnésArticle réservé aux abonnés
Le 26/06/23 à 7:00, mise à jour le 11/09/23 à 13:24 Lecture 3 min.

Le résultats des tests montrent que les radiologues obtenaient des résultats significativement plus mauvais quand il s’agissait d’évaluer des examens préalablement classés dans la mauvaise catégorie BI-RADS par les algorithmes (photo d'illustration). © Carla Ferrand

Connaissez-vous le biais d’automatisation ? Identifié par des chercheurs en psychologie sociale, il s’agit de la propension de l’être humain à favoriser les suggestions d’un système automatique de prise de décision, en ignorant les informations contradictoires issues d’une autre source, même si elles sont correctes [1]. Alors que l’intelligence artificielle se développe en imagerie médicale, les préoccupations se font jour concernant les effets de ce biais sur le travail des radiologues. Une équipe de chercheurs allemands et hollandais s’est ainsi intéressée à l’influence des systèmes basés sur l’IA d’aide à l’interprétation des examens de mammographie. Elle a publié ses résultats au mois de mai dans la revue Radiology [2].

27 radiologues et 50 examens

Pour cette expérimentation prospective, les chercheurs ont demandé à 27 radiologues d’interpréter 50 examens de mammographie et de leur attribuer un score BI-RADS, avec l’assistance d’un système d’intelligence artificielle. Les mammographi

Il vous reste 77% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Jérome Hoff

Rédacteur en chef adjoint BOM Presse Clichy

Voir la fiche de l’auteur

Bibliographie

  1. Cummings M. L., « Automation bias in intelligent time critical decision support systems » in Decision Making in Aviation, Juillet 2017, p. 289-294. DOI : 10.4324/9781315095080-17
  2. Dratsch T., Chen X., Mehrizi M. R. et coll., « Automation bias in mammography: the impact of artificial intelligence BI-RADS suggestions on reader performance », Radiology, mai 2023, vol. 307, n° 4 : e222176. DOI : 10.1148/radiol.222176.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

30 Jan

15:08

Le centre hospitalier de Valenciennes a conclu un partenariat avec Siemens Healthineers pour le renouvellement de ses équipements d'imagerie en coupes, informe l'Observateur Valenciennois. Il prévoit notamment l'installation d'un scanner à comptage photonique.

13:15

Dans ses vœux pour 2026, le Conseil national de l'Ordre des médecins annonce le lancement d'un Livre blanc 2027, « destiné à porter la voix des médecins dans le débat démocratique ».

7:12

Avec leurs capacités à détecter le métastases, la TEP-TDM au PSMA et l'IRM corps entier ont le potentiel de modifier la prise en charge des patients avec un cancer de la prostate avancé, mais des essais prospectifs sont nécessaires avant de les recommander en routine clinique, conclut un article dans European Radiology.
29 Jan

16:21

Alain Luciani, PU-PH au GHU Henri-Mondor (94) a été élu futur président de la Société française de radiologie (SFR) pour le mandat 2027 - 2031 ce 29 janvier, annonce la SFR.
Docteur Imago

GRATUIT
VOIR