Mammographie et tomosynthèse

L’IA pourrait faciliter le dépistage du cancer du sein sans perte de sensibilité

Dans le cadre d’une étude décrite dans Radiology, l’utilisation d’un logiciel d’intelligence artificielle pour trier les examens de mammographie ou de tomosynthèse a permis de diminuer de près de trois quarts la charge de travail des radiologues par rapport à une double lecture humaine, sans perte de sensibilité.

icon réservé aux abonnésArticle réservé aux abonnés
Le 23/06/21 à 7:00, mise à jour aujourd'hui à 14:11 Lecture 3 min.

Par rapport aux dépistages par mammographie à double lecture et par tomosynthèse à double lecture, l’utilisation de l’IA a permis de réduire la charge de travail de 71,5 % et de 72,4 % respectivement. © Carla Ferrand

L’intelligence artificielle est-elle l’avenir du dépistage du cancer du sein ? Pour les auteurs d’un article paru début mai 2021 dans Radiology, elle pourrait participer à résoudre les problèmes de manque de praticiens et de charge de travail [1] en focalisant l’attention des radiologues sur les examens les plus suspects.

Un premier tri par intelligence artificielle

José-Luis Maria Povedano et ses confrères de l’université Reina Sofía, à Cordoue (Espagne), ont comparé les performances d’une stratégie de dépistage basée sur un tri des examens de mammographie ou de tomosynthèse par une intelligence artificielle autonome avant intervention humaine à celles de protocoles « classiques » de double lecture de tous les examens par des radiologues experts. « À notre connaissance, notre étude est la première à évaluer les apports d’un logiciel à base d’apprentissage profond dans le dépistage du cancer du sein par tomosynthèse », écrivent-ils.

Un essai espagnol de dépistage par tomosynthèse

Ils ont t

Il vous reste 80% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Jérome Hoff

Rédacteur en chef adjoint BOM Presse Clichy

Voir la fiche de l’auteur

Bibliographie

  1. Raya-Povedano J. L., Romero-Martin S., Elías-Cabot E. et coll., « AI-based strategies to reduce wokload in breast cancer screening with mammography and tomosynthesis: a retrospective evaluation », Radiology, epub 4 mai 2021. DOI : 10.1148/radiol.2021203555.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

09 Jan

16:11

Une étude publiée dans BMC Urology a évalué la capacité de plusieurs grands modèles de langage à classer des comptes rendus d’IRM de la prostate selon le système PI-RADS v2.1. Le modèle GPT-o1 montre la meilleure concordance avec les radiologues, mais tous les modèles présentent des limites pour les lésions PI-RADS 3.

13:08

Chez les patients atteints d'occlusion aiguë des grands vaisseaux (LVO) de l’ACM et de sténose de l’artère intracrânienne sous-jacente traitée par stent de secours, l’administration préalable d’une thrombolyse intraveineuse n’est pas associée à une augmentation du risque d’hémorragie intracrânienne symptomatique ni de la mortalité à 90 jours (étude).

7:30

Un modèle de classification ternaire radiologique a obtenu des performances diagnostiques « excellentes » pour différencier les lésions pulmonaires sur des images de scanner, selon des résultats publiés dans Radiology.
08 Jan

15:17

Des chercheurs ont introduit un nouveau marqueur tumoral IRM appelé « signe sombre-clair-obscur » et suggèrent qu’il peut aider à prédire la métastase des ganglions lymphatiques chez les patients atteints d’un cancer rectal, selon une étude publiée dans Radiology.
Docteur Imago

GRATUIT
VOIR