Aide au diagnostic

L’IA prometteuse en échographie du sein malgré ses limites

Une session de l’ECR 2023 a fait le point sur les avancées de l’intelligence artificielle en échographie mammaire. Si ses résultats dépendent encore trop de l’opérateur, la lecture automatique des échographies montre de bonnes performances pour la détection et la classification des lésions.

icon réservé aux abonnésArticle réservé aux abonnés
Le 13/03/23 à 16:00, mise à jour le 11/09/23 à 13:23 Lecture 4 min.

Par rapport à la mammographie, l'utilisation de l'IA en échographie se confronte à des limites techniques significatives, a expliqué Tamar Sella. Capture d'écran ECR 2023

L’exercice est désormais un incontournable des rassemblements scientifiques : plusieurs sessions du Congrès européen de radiologie 2023 ont fait l’état de lieux des applications de l’intelligence artificielle (IA) dans différentes surspécialités. Vendredi 3 mars, c’était l’imagerie du sein. Parmi les trois intervenantes, Tamar Sella, cheffe de l’unité d’imagerie du sein du CHU Hadassah, à Jérusalem (Israël), a fait le point sur l’IA en échographie mammaire.

Une fiabilité dépendante de l’opérateur

« L’IA a le potentiel d’améliorer la précision de l’échographie mammaire en fournissant une analyse automatique et objective des données d’imagerie, sans être affectée par la fatigue des radiologues », entame-t-elle. Toutefois, par rapport à la mammographie, son utilisation en échographie se confronte à des limites techniques significatives. Pour commencer, les données disponibles pour l’entraînement sont encore peu nombreuses. « C’est un problème, en particulier pour les lésions rares ou peu co

Il vous reste 83% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Jérome Hoff

Rédacteur en chef adjoint BOM Presse Clichy

Voir la fiche de l’auteur

Bibliographie

  1. Brunetti N., Calabrese M., Martinoli C. et coll., « Artificial intelligence in ultrasound: from diagnosis to prognosis-a rapid review », Diagnostics, 2023, vol. 123, n°1 : 58. DOI : 10.3390/diagnostics13010058
  2. Byra M., Galperin M., Ojeda-Fournier H. et coll., « Breast mass classification in sonography with transfer learning using a deep convolutional neural network and color conversion », Medical Physics, février 2019, vol. 46, n° 2, p. 746-755. DOI : 10.1002/mp.13361.
  3. Huang Y., Han L., Dou H. et coll., « Two-stage CNNs for computerized BI-RADS categorization in breast ultasound images », BioMedical Engineering Online, 2019, vol. 18, n° 8. DOI : 10.1186/s12938-019-0626-5
  4. Hejduk P., Marcon M., Unkelbach J. t coll., « Fully automatic classification of automated breast ultrasound (ABUS) imaging according to BI-RADS using a deep convolutional neural network », European Radiology, juillet 2022, vol. 32, p. 4868-4878. DOI : https://10.1007/s00330-022-08558-0
  5. Wu L., Ye W., Liu Y. et coll., « An integrated deep learning model for the prediction of pathological complete response to neoadjuvant chemotherapy with serial ultrasonography in breast cancer patients: a multicentre retrospective study », Breast Cancer Research, novembre 2022, vol. 24, n° 1 : 81. DOI : 10.1186/s13058-022-01580-6.
  6. Jiang M., Zhang D., Tang S.-C. et coll., « Deep learning with convolutional neural network in the assessment of breast cancer molecuoar subtipes based on US images: a multicenter prospective study », European Radiology, juin 2021, vol. 31, n° 6, p. 3673-3682. DOI : https://doi.org/10.1007/s00330-020-07544-8.
  7. Ye H., Hang J., Zhang M. et coll., « Automatic identification of triple negative breast cancer in ultrasonography using a deep convolutional neural network », Scientific Reports, vol. 11, n° 20474. DOI : 10.1038/s41598-021-00018-x

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

29 Jan

16:21

Alain Luciani, PU-PH au GHU Henri-Mondor (94) a été élu futur président de la Société française de radiologie (SFR) pour le mandat 2027 - 2031 ce 29 janvier, annonce la SFR.

15:25

Une étude publiée dans JACR compare l’utilisation des examens d’imagerie chez des enfants en consultation externe dans les hôpitaux pédiatriques et non pédiatriques à partir de données Medicaid 2019. Elle montre que les hôpitaux non pédiatriques utilisent plus fréquemment les examens exposant aux radiations ionisantes, tels que les radiographies et scanners, tandis que les hôpitaux pédiatriques privilégient davantage l’échographie et l’IRM.  

13:18

Une étude publiée dans Emergency Radiology rapporte un cas d’hémorragie sous-arachnoïdienne avec anévrismes multiples, dans lequel l’imagerie conventionnelle ne permettait pas d’identifier l’anévrisme rompu. L’IRM de la paroi vasculaire a mis en évidence un rehaussement focal de l’anévrisme du sommet basilaire, permettant un traitement endovasculaire ciblé et soulignant l’intérêt de cette technique dans les situations diagnostiques complexes.  

7:17

Une étude prospective compare l’efficacité de l’échographie mammaire automatisée (ABUS) et de l’échographie manuelle (HHUS) en seconde intention pour détecter des lésions identifiées en IRM mammaire. Bien que la HHUS détecte significativement plus de lésions, les deux techniques présentent une sensibilité similaire, l’ABUS ayant une valeur prédictive positive plus élevées. Ces résultats démontrent que les deux méthodes sont complémentaires et ont le potentiel d’augmenter le taux de détection des lésions lorsqu’elles sont utilisées conjointement.    
Docteur Imago

GRATUIT
VOIR