Aide au diagnostic

L’IA prometteuse en échographie du sein malgré ses limites

Une session de l’ECR 2023 a fait le point sur les avancées de l’intelligence artificielle en échographie mammaire. Si ses résultats dépendent encore trop de l’opérateur, la lecture automatique des échographies montre de bonnes performances pour la détection et la classification des lésions.

icon réservé aux abonnésArticle réservé aux abonnés
Le 13/03/23 à 16:00, mise à jour le 11/09/23 à 13:23 Lecture 4 min.

Par rapport à la mammographie, l'utilisation de l'IA en échographie se confronte à des limites techniques significatives, a expliqué Tamar Sella. Capture d'écran ECR 2023

L’exercice est désormais un incontournable des rassemblements scientifiques : plusieurs sessions du Congrès européen de radiologie 2023 ont fait l’état de lieux des applications de l’intelligence artificielle (IA) dans différentes surspécialités. Vendredi 3 mars, c’était l’imagerie du sein. Parmi les trois intervenantes, Tamar Sella, cheffe de l’unité d’imagerie du sein du CHU Hadassah, à Jérusalem (Israël), a fait le point sur l’IA en échographie mammaire.

Une fiabilité dépendante de l’opérateur

« L’IA a le potentiel d’améliorer la précision de l’échographie mammaire en fournissant une analyse automatique et objective des données d’imagerie, sans être affectée par la fatigue des radiologues », entame-t-elle. Toutefois, par rapport à la mammographie, son utilisation en échographie se confronte à des limites techniques significatives. Pour commencer, les données disponibles pour l’entraînement sont encore peu nombreuses. « C’est un problème, en particulier pour les lésions rares ou peu co

Il vous reste 83% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Jérome Hoff

Rédacteur en chef adjoint BOM Presse Clichy

Voir la fiche de l’auteur

Bibliographie

  1. Brunetti N., Calabrese M., Martinoli C. et coll., « Artificial intelligence in ultrasound: from diagnosis to prognosis-a rapid review », Diagnostics, 2023, vol. 123, n°1 : 58. DOI : 10.3390/diagnostics13010058
  2. Byra M., Galperin M., Ojeda-Fournier H. et coll., « Breast mass classification in sonography with transfer learning using a deep convolutional neural network and color conversion », Medical Physics, février 2019, vol. 46, n° 2, p. 746-755. DOI : 10.1002/mp.13361.
  3. Huang Y., Han L., Dou H. et coll., « Two-stage CNNs for computerized BI-RADS categorization in breast ultasound images », BioMedical Engineering Online, 2019, vol. 18, n° 8. DOI : 10.1186/s12938-019-0626-5
  4. Hejduk P., Marcon M., Unkelbach J. t coll., « Fully automatic classification of automated breast ultrasound (ABUS) imaging according to BI-RADS using a deep convolutional neural network », European Radiology, juillet 2022, vol. 32, p. 4868-4878. DOI : https://10.1007/s00330-022-08558-0
  5. Wu L., Ye W., Liu Y. et coll., « An integrated deep learning model for the prediction of pathological complete response to neoadjuvant chemotherapy with serial ultrasonography in breast cancer patients: a multicentre retrospective study », Breast Cancer Research, novembre 2022, vol. 24, n° 1 : 81. DOI : 10.1186/s13058-022-01580-6.
  6. Jiang M., Zhang D., Tang S.-C. et coll., « Deep learning with convolutional neural network in the assessment of breast cancer molecuoar subtipes based on US images: a multicenter prospective study », European Radiology, juin 2021, vol. 31, n° 6, p. 3673-3682. DOI : https://doi.org/10.1007/s00330-020-07544-8.
  7. Ye H., Hang J., Zhang M. et coll., « Automatic identification of triple negative breast cancer in ultrasonography using a deep convolutional neural network », Scientific Reports, vol. 11, n° 20474. DOI : 10.1038/s41598-021-00018-x

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

05 Fév

16:36

Le centre hospitalier Agen-Nérac (47) a mis en service le 26 janvier 2026 une nouvelle salle de radiologie numérisée sur son site de Nérac. D’un montant de 185 000 €, cet investissement améliore la qualité des diagnostics tout en réduisant l’exposition aux rayons, informe actu.fr.

15:42

La FDA a autorisé RevealAI-Lung, un outil d’intelligence artificielle développé par RevealDx pour détecter et caractériser les nodules pulmonaires sur les scanners, en fournissant aux radiologues un score de probabilité de malignité.

7:14

Les résultats d'une étude soulignent la persistance des inégalités homme/femme dans le financement de la recherche dans la radiologie. "Ce déséquilibre risque de freiner l'innovation et de limiter la diversité des perspectives qui orienteront les recherches futures", signalent les auteurs.
04 Fév

15:18

Le gouvernement a décidé de transférer plusieurs missions de Santé publique France (SPF), comme la réalisation de campagnes de communication ou la gestion des stocks et de la réserve sanitaire, au ministère de la santé, a déclaré vendredi 30 janvier le cabinet de la ministre de la santé, Stéphanie Rist, a rapporté Le Monde.

13:21

L'embolisation des artères méningées avec seulement des coils pourrait constituer une option thérapeutique sûre et efficace pour les hématomes sous-duraux chez les patients atteints de cancer. (Etude)
Docteur Imago

GRATUIT
VOIR