Imagerie thoracique

Quelle place pour l’IA dans la lutte contre la Covid-19 ?

Une session du RSNA 2020 consacrée au rôle de l'IA dans la pandémie de Covid-19 a réuni des intervenants chinois et américains. Ils ont dressé le bilan des atouts et des limites de l'intelligence artificielle, et appelé à un contrôle qualité plus strict des produits.

icon réservé aux abonnésArticle réservé aux abonnés
Le 01/12/20 à 8:00, mise à jour hier à 14:09 Lecture 3 min.

Pour l’orateur chinois Shi-Yuan Liu, radiologue à l’hôpital Changzheng à Shanghai, l’IA permet aux radiologues de travailler plus efficacement. capture d'écran RSNA 2020

Les deux thèmes phares du RSNA 2020 se sont partagé l’affiche au premier jour du congrès. L'intelligence artificielle et la Covid-19 étaient au programme d’une session commune le 29 novembre, lors de laquelle un radiologue américain et un radiologue chinois ont présenté leurs retours d’expérience respectifs sur l’utilisation de l’IA pour l’aide à la décision dans le contexte de Covid-19.

Détection et prédiction

Face à la pandémie, les besoins d’un outil d’IA se sont concentrés dans un premier temps sur le diagnostic initial, explique Greg Zaharchuk, professeur de radiologie à l’université de Stanford. « C’était un paramètre très important dans la première phase épidémique, lorsque les systèmes de santé ont été submergés et que les radiologues ne connaissaient pas cette nouvelle maladie », observe-t-il.
Désormais, le diagnostic initial de la Covid-19 n’est plus une problématique de premier plan et les besoins d’outils d’IA s’orientent plus vers la prédiction de l’évolution de la maladie, p

Il vous reste 79% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Carla Ferrand

Bibliographie

  1. Mei X., Lee H.-C., Yang Y. et coll., « Artificial intelligence-enabled rapid diagnosis of patients with COVID-19 », Nature Medicine, mai 2020, vol. 26, p. 1224-1228. DOI : 10.1038/s41591-020-0931-3.
  2. Li M. D., Arun N. T., Gidwani M. et coll., « Automated assessment and tracking of COVID-19 pulmonary disease severity on chest radiographs using convolutional siamese neutral networks », Radiology : Artificial Intelligence, juillet 2020, vol. 2, n° 4. DOI : 10.1148/ryai.2020200079.
  3. Li L., Qin L., Xu Z. et coll., « Using artificial intelligence to detect COVID-19 and Community-acquired pneumonia based on pulmonary CT: Evaluation of the diagnostic accuracy », Radiology, août 2020, vol. 296, n° 2. DOI : 10.1148/radiol.2020200905.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

7:30

Le Sénat a adopté le 19 novembre un amendement gouvernemental au PLFSS 2025 qui prévoit d'exonérer de cotisations pour l'assurance vieillesse les médecins en situation de cumul emploi-retraite qui exercent dans les zones sous-denses. La Caisse autonome de retraite des médecins français (CARMF) s'alarme dans un communiqué des conséquences de cette mesure.

13:31

Un réseau de neurones convolutifs (CNN) a été entraîné à détecter automatiquement les zones floues en mammographie dans des régions pertinentes pour le diagnostic. Ce modèle, s'il était implémenté en pratique clinique, pourrait fournir un retour utile aux MERM afin de réaliser rapidement de meilleures prises de vue qui soient de haute qualité, selon une étude rétrospective.

7:31

Un état de l'art en français sur la biopsie pulmonaire percutanée sous scanner présentant ses indications, ses contre-indications et les bonnes pratiques dans ce domaine a été publié le 14 novembre en accès libre dans le Journal d'imagerie diagnostique et interventionnelle.
Docteur Imago

GRATUIT
VOIR