Imagerie thoracique

Quelle place pour l’IA dans la lutte contre la Covid-19 ?

Une session du RSNA 2020 consacrée au rôle de l'IA dans la pandémie de Covid-19 a réuni des intervenants chinois et américains. Ils ont dressé le bilan des atouts et des limites de l'intelligence artificielle, et appelé à un contrôle qualité plus strict des produits.

icon réservé aux abonnésArticle réservé aux abonnés
Le 01/12/20 à 8:00, mise à jour aujourd'hui à 15:14 Lecture 3 min.

Pour l’orateur chinois Shi-Yuan Liu, radiologue à l’hôpital Changzheng à Shanghai, l’IA permet aux radiologues de travailler plus efficacement. capture d'écran RSNA 2020

Les deux thèmes phares du RSNA 2020 se sont partagé l’affiche au premier jour du congrès. L'intelligence artificielle et la Covid-19 étaient au programme d’une session commune le 29 novembre, lors de laquelle un radiologue américain et un radiologue chinois ont présenté leurs retours d’expérience respectifs sur l’utilisation de l’IA pour l’aide à la décision dans le contexte de Covid-19.

Détection et prédiction

Face à la pandémie, les besoins d’un outil d’IA se sont concentrés dans un premier temps sur le diagnostic initial, explique Greg Zaharchuk, professeur de radiologie à l’université de Stanford. « C’était un paramètre très important dans la première phase épidémique, lorsque les systèmes de santé ont été submergés et que les radiologues ne connaissaient pas cette nouvelle maladie », observe-t-il.
Désormais, le diagnostic initial de la Covid-19 n’est plus une problématique de premier plan et les besoins d’outils d’IA s’orientent plus vers la prédiction de l’évolution de la maladie, p

Il vous reste 79% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Carla Ferrand

Journaliste cheffe de rubrique

Voir la fiche de l’auteur

Bibliographie

  1. Mei X., Lee H.-C., Yang Y. et coll., « Artificial intelligence-enabled rapid diagnosis of patients with COVID-19 », Nature Medicine, mai 2020, vol. 26, p. 1224-1228. DOI : 10.1038/s41591-020-0931-3.
  2. Li M. D., Arun N. T., Gidwani M. et coll., « Automated assessment and tracking of COVID-19 pulmonary disease severity on chest radiographs using convolutional siamese neutral networks », Radiology : Artificial Intelligence, juillet 2020, vol. 2, n° 4. DOI : 10.1148/ryai.2020200079.
  3. Li L., Qin L., Xu Z. et coll., « Using artificial intelligence to detect COVID-19 and Community-acquired pneumonia based on pulmonary CT: Evaluation of the diagnostic accuracy », Radiology, août 2020, vol. 296, n° 2. DOI : 10.1148/radiol.2020200905.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

21 Oct

16:28

14:04

Des chercheurs chinois ont combiné un modèle d'apprentissage profond d'analyse d'images échographiques et un modèle de langage pour améliorer la détection et l'évaluation des tumeurs ovariennes. Il a permis d'améliorer les performances des radiologues et de hisser celles des médecins de premier recours à des niveaux experts, écrivent-ils dans Insights into Imaging.

7:30

Une revue d'études confirme la haute sensibilité de la classification PI-RADS dans sa version 2.1 pour la détection des cancers de la prostate cliniquement significatifs. Une proportion « considérable » d'entre elles présentent toutefois de forts risques de biais et des préoccupations d'applicabilité et sont associées à une baisse de la sensibilité et une hausse des taux de détection des cancers PI-RADS de catégorie 2.
20 Oct

16:02

Une méta-analyse de 13 articles constate l'absence de preuves ou des preuves contradictoires de l'intérêt d'utiliser des agents antispasmodiques pour améliorer la qualité d'image de l'IRM pelvienne.
Docteur Imago

GRATUIT
VOIR