Éthique

Quelles stratégies pour limiter les biais des systèmes d’IA ?

Une session du RSNA 2022 s'est intéressée aux défis éthiques de l'intelligence artificielle, et notamment l'identification et la réduction des biais. La radiologue américaine Zi Zhang a présenté des stratégies pour éviter ces biais lors du développement, de l'évaluation et du déploiement clinique des systèmes.

icon réservé aux abonnésArticle réservé aux abonnés
Le 14/12/22 à 8:00, mise à jour aujourd'hui à 14:08 Lecture 4 min.

« Les biais peuvent se cacher dans les données, dans les algorithmes et dans les applications cliniques. Ils reflètent souvent des déséquilibres profonds dans les structures institutionnelles et les relations sociales », relève Zi Zhang. © C. F.

Les considérations éthiques de l’intelligence artificielle (IA) en radiologie étaient l’un des sujets saillants du RSNA 2022. Le 27 novembre, une session a traité la question des biais de l’IA. « Les biais peuvent se cacher dans les données, dans les algorithmes et dans les applications cliniques », a souligné Zi Zhang, professeure assistante de radiologie à l’hôpital universitaire Jefferson, à Philadelphie.

La communauté médicale sur le qui-vive

Selon elle, ces biais reflètent souvent des déséquilibres profonds dans les structures institutionnelles et les relations sociales. Des considérations techniques et sociales doivent donc être apportées pour les identifier, les réduire et, in fine les éliminer des systèmes d’IA. Concernant cette problématique, l’intervenante cite une déclaration multisociétaire commune entre l’Europe et l’Amérique du Nord, publiée en 2019 dans la revue Radiology [1]. Le document stipule que la responsabilité ultime de l'IA incombe à ses concepteurs et à ses opéra

Il vous reste 82% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Carla Ferrand

Journaliste cheffe de rubrique

Voir la fiche de l’auteur

Bibliographie

  1. Raymond Geis J., Brady A. P., Carol C. et coll., « Ethics of artificial intelligence in radiology: summary of the joint european and north american multisociety statement », Radiology, novembre 2019, vol. 293, n° 2, p. 241-244. DOI : 10.1148/radiol.2019191903.
  2. Vokinger K. N., Feuerriegel S., Kesselheim A. S. et coll., « Mitigating bias in machine learning for medicine », Nature Communications Medicine, 2021, vol. 1, n° 25. DOI : 10.1038/s43856-021-00028-w.
  3. Zou J., Schiebinger L., « AI can be sexist and racist – it’s time to make it fair », Nature, juillet 2018, vol. 559, p. 324-326. DOI : 10.1038/d41586-018-05707-8.

Discussion

Aucun commentaire

Laisser un commentaire

Le fil Docteur Imago

03 Fév

16:00

Un arrêté du 27 janvier 2026 entérine la création d'un programme de financement destiné à renforcer la sécurité numérique des établissements de santé.

13:55

La mammographie de dépistage assistée par IA donnerait des résultats systématiquement favorables par rapport à la double lecture standard, avec une sensibilité plus élevée et une spécificité identique, tout en réduisant la charge de travail liée à la lecture des images (étude).

7:51

Un système d'IA aurait considérablement amélioré les performances des radiologues dans la détection des nodules pulmonaires, avec des avantages constants pour tous les types de nodules, tous les contextes de dépistage et tous les niveaux d'expérience (étude).
02 Fév

16:24

Une étude publiée dans JVIR a comparé par questionnaire le niveau de burnout, de stress ressenti et de satisfaction professionnelle des équipes de radiologie interventionnelle et de cardiologie d'un même établissement en Turquie. Les médecins de RI ont rapporté davantage de burnout tandis que les équipes de cardiologie se déclaraient moins satisfaites de leur travail. « Ces données mettent en lumière le besoin de stratégies ciblées adaptées aux besoins spécifiques de chaque groupe », concluent les chercheurs.
Docteur Imago

GRATUIT
VOIR