Éthique

Quelles stratégies pour limiter les biais des systèmes d’IA ?

Une session du RSNA 2022 s'est intéressée aux défis éthiques de l'intelligence artificielle, et notamment l'identification et la réduction des biais. La radiologue américaine Zi Zhang a présenté des stratégies pour éviter ces biais lors du développement, de l'évaluation et du déploiement clinique des systèmes.

icon réservé aux abonnésArticle réservé aux abonnés
Le 14/12/22 à 8:00, mise à jour le 11/09/23 à 13:23 Lecture 4 min.

« Les biais peuvent se cacher dans les données, dans les algorithmes et dans les applications cliniques. Ils reflètent souvent des déséquilibres profonds dans les structures institutionnelles et les relations sociales », relève Zi Zhang. © C. F.

Les considérations éthiques de l’intelligence artificielle (IA) en radiologie étaient l’un des sujets saillants du RSNA 2022. Le 27 novembre, une session a traité la question des biais de l’IA. « Les biais peuvent se cacher dans les données, dans les algorithmes et dans les applications cliniques », a souligné Zi Zhang, professeure assistante de radiologie à l’hôpital universitaire Jefferson, à Philadelphie.

La communauté médicale sur le qui-vive

Selon elle, ces biais reflètent souvent des déséquilibres profonds dans les structures institutionnelles et les relations sociales. Des considérations techniques et sociales doivent donc être apportées pour les identifier, les réduire et, in fine les éliminer des systèmes d’IA. Concernant cette problématique, l’intervenante cite une déclaration multisociétaire commune entre l’Europe et l’Amérique du Nord, publiée en 2019 dans la revue Radiology [1]. Le document stipule que la responsabilité ultime de l'IA incombe à ses concepteurs et à ses opéra

Il vous reste 82% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Carla Ferrand

Bibliographie

  1. Raymond Geis J., Brady A. P., Carol C. et coll., « Ethics of artificial intelligence in radiology: summary of the joint european and north american multisociety statement », Radiology, novembre 2019, vol. 293, n° 2, p. 241-244. DOI : 10.1148/radiol.2019191903.
  2. Vokinger K. N., Feuerriegel S., Kesselheim A. S. et coll., « Mitigating bias in machine learning for medicine », Nature Communications Medicine, 2021, vol. 1, n° 25. DOI : 10.1038/s43856-021-00028-w.
  3. Zou J., Schiebinger L., « AI can be sexist and racist – it’s time to make it fair », Nature, juillet 2018, vol. 559, p. 324-326. DOI : 10.1038/d41586-018-05707-8.

Discussion

Aucun commentaire

Laisser un commentaire

Le fil Docteur Imago

21 Fév

13:40

Selon une étude publiée dans Radiology, un algorithme d’apprentissage profond disponible dans le commerce peut permettre des examens IRM de l’épaule de bonne qualité en sept minutes.

7:37

Le parlement a adopté définitivement le budget 2025 de la Sécurité sociale ce 17 février. Il prévoit une hausse des dépenses d’Assurance maladie de 3,4 %, pour atteindre un montant de 265 milliards d’euros.
20 Fév

16:01

L’imagerie des paramètres d’atténuation par ultrasons peut être utilisée pour le dépistage clinique afin d’évaluer la prévalence de la MASLD chez les patients en surpoids ou obèses et de suivre de manière dynamique la progression de la maladie, conclut une étude publiée dans Clinical radiology.

13:31

Le modèle de langage appelé Axpert démontre un potentiel de marquage automatique de l’entérocolite nécrosante sur les comptes-rendus de radiographie abdominale infantile. Cette méthode de marquage peut ainsi servir de cadre pour d’autres modalités d’imagerie et maladies chez les enfants, et les maladies rares chez l’adulte, suggère une étude publiée dans JAMIA Open.
Docteur Imago

GRATUIT
VOIR