Apprentissage profond

Un algorithme limite « drastiquement » la dose de gadolinium nécessaire en IRM

À qualité d’image équivalente, un algorithme présenté ce lundi 26 novembre au congrès de la RNSA permettrait de réaliser des examens d’IRM avec 10 % de la dose habituelle de produit de contraste au gadolinium.

icon réservé aux abonnésArticle réservé aux abonnés
Le 26/11/18 à 13:00, mise à jour aujourd'hui à 14:24 Lecture 2 min.

L’algorithme a appris à extrapoler l’image « dose entière » d’un examen à partir des images de plus faible dose. © Enhao Gong

Alors que la communauté scientifique se mobilise pour déterminer les effets de la rétention de gadolinium dans le corps humain, une technique de rehaussement de contraste basée sur l’apprentissage profond pourrait aider les radiologues à moins utiliser cet élément pendant leurs examens d’IRM. Ses développeurs la présentent dans un article du Journal of Magnetic Resonance Imaging [1] et lors d’une session du congrès de la Société nord-américaine de radiologie (RSNA), ce lundi 26 septembre.

Trois séries d’images pour 200 patients

Pour entraîner cet algorithme, Enhao Gong, auteur principal de l’étude, et ses confrères de l’université de Stanford, Californie, ont collecté les examens d’IRM de 200 patients, avec des séquences 3D T1 IR-FSPGR, qui portaient sur « une variété d’indications ». Pour chacun de ces patients, ils ont extrait trois séries d’images : celles réalisés avant l’injection de produit de contraste à base de gadolinium, désignées comme « l’examen zéro dose », celles réalisés a

Il vous reste 66% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Jérome Hoff

Rédacteur en chef adjoint BOM Presse Clichy

Voir la fiche de l’auteur

Bibliographie

  1. Gong E., Pauly J. M., Wintermark M., « Deep learning enables reduced gadolinium dose for constrast-enhanced brain MRI », J. Magn. Reson. Imaging, 2018, vol. 48, p. 330-340. https://doi.org/10.1002/jmri.25970.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

06 Fév

13:06

Une étude publiée dans Radiology montre que le compte rendu structuré améliore l’efficacité des radiologues en réduisant le temps de rédaction et en recentrant l’attention visuelle sur l’image, par rapport au texte libre. L’ajout de l’intelligence artificielle augmente la précision diagnostique.

7:30

Une étude rétrospective montre que le score Node-RADS basé sur l’IRM offre une excellente précision diagnostique pour la détection des métastases ganglionnaires chez les patients atteints de cancer du rectum, avec une performance supérieure aux critères de taille et aux comptes rendus IRM classiques.
05 Fév

16:36

Le centre hospitalier Agen-Nérac (47) a mis en service le 26 janvier 2026 une nouvelle salle de radiologie numérisée sur son site de Nérac. D’un montant de 185 000 €, cet investissement améliore la qualité des diagnostics tout en réduisant l’exposition aux rayons, informe actu.fr.

15:42

La FDA a autorisé RevealAI-Lung, un outil d’intelligence artificielle développé par RevealDx pour détecter et caractériser les nodules pulmonaires sur les scanners, en fournissant aux radiologues un score de probabilité de malignité.

7:14

Les résultats d'une étude soulignent la persistance des inégalités homme/femme dans le financement de la recherche dans la radiologie. "Ce déséquilibre risque de freiner l'innovation et de limiter la diversité des perspectives qui orienteront les recherches futures", signalent les auteurs.
Docteur Imago

GRATUIT
VOIR