Apprentissage profond

Un algorithme prédit la malignité du cancer du sein aussi bien que le radiologue

Une équipe d'IBM a développé un outil qui s'appuie sur les mammographies numériques et le dossier médical des patientes. Objectif : prédire la malignité des biopsies et différencier les dépistages normaux des pathologiques.

icon réservé aux abonnésArticle réservé aux abonnés
Le 26/08/19 à 7:00, mise à jour aujourd'hui à 15:17 Lecture 1 min.

L'algorithme s’est basé sur un ensemble de données comprenant les images mammographiques et les dossiers de santé électroniques (photo d'illustration). © Carla Ferrand

Encore un exemple du potentiel de l’intelligence artificielle dans le domaine de l’aide au diagnostic. Une équipe du centre de recherche d’IBM, à Haifa, associée à plusieurs laboratoires et établissements de santé israéliens, a développé un modèle qui permettrait de prédire l’évolution à un an du cancer du sein malin, avec une précision comparable à celle des radiologues. Les résultats de ses travaux sont parus en juin 2019 dans Radiology [1]

52 936 images recueillies

Cette étude rétrospective a inclus 52 936 images recueillies chez 13 234 femmes ayant passé au moins une mammographie entre 2013 et 2017, et qui avaient un dossier médical depuis au moins un an avant cet examen. L'algorithme a été formé pour prédire la malignité de la biopsie et différencier les examens de dépistage normaux des examens anormaux. Il s’est basé sur un ensemble de données comprenant les images mammographiques et les dossiers de santé électroniques.

Une sensibilité de 87 % pour la malignité

L'algorithme a été val

Il vous reste 55% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Avatar photo

Benjamin Bassereau

Directeur de la rédaction BOM Presse Clichy

Voir la fiche de l’auteur

Bibliographie

  1. Akselrod-Ballin A., Chorev M. et coll., « Predicting Breast Cancer by Applying Deep Learning to Linked Health Records and Mammograms », Radiology, publié en ligne le 18 juin 2019. DOI : 10.1148/radiol.2019182622

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

30 Mai

16:00

Le radiologue interventionnel Mehdi Lebbadi a publié sur LinkedIn un appel à ses confrères à participer au #RIchallenge, du 1er au 10 juin. Visant à mettre en valeur la RI auprès des médecins et du public, ce défi vise à publier sur LinkedIn pour chaque participant 10 publications (une par jour) sur un sujet en lien avec la RI. Le vainqueur (le post ayant généré le plus d'interactions) sera récompensé le 12 juin par le Trophée GuERI com lors des JFICV 2025 à Arles, annonce le praticien.

13:30

Chez des patients atteints d'un cancer de la prostate métastatique résistant à la castration positif au PSMA et sans traitement préalable au taxane, le traitement par 177Lu-PSMA-617 pourrait différer la dégradation de la qualité de vie et de la douleur rapportées par les patients et empêcher les évènements squelettiques symptomatiques par rapport au traitement par changement de médicament inhibiteur de la voie de signalisation du récepteur aux androgènes (ARPI), selon une analyse des résultats de l'essai randomisé de phase 3 PSMAfore.

7:30

La Société européenne de radiologie gastrointestinale et abdominale (ESGAR) et l'Organisation européenne pour la recherche et le traitement du cancer (EORTC) ont publié dans European Radiology des recommandations sur l'imagerie lors du staging, de la planification du traitement et du suivi du carcinome hépatocellulaire dans le cadre de thérapies locales ou locorégionales.
28 Mai

16:00

La Société européenne de radiologie d'urgence (ESER) a publié des recommandations pratiques pour l'évaluation en imagerie et en urgence des causes gynécologiques des douleurs pelviennes aiguës chez la femme.
Docteur Imago

GRATUIT
VOIR