Intelligence artificielle

Un modèle de deep learning prédit le risque de cancer du sein à 5 ans

Des chercheurs du Massachusetts Institute of Technology (MIT) ont mis au point un algorithme d’évaluation du risque de cancer du sein basé sur l’apprentissage profond. Capable de prédire le risque à cinq ans, il serait plus précis que le modèle Tyrer-Cuzick aujourd’hui utilisé.

icon réservé aux abonnésArticle réservé aux abonnés
Le 05/07/19 à 7:00, mise à jour hier à 14:17 Lecture 1 min.

Le modèle mis au point par l'équipe américaine a été capable d'identifier une femme à haut risque de cancer du sein quatre ans avant qu'il ne se développe (photo). ©MIT/CSAIL

Leur création serait plus efficace que les standards en vigueur. Des chercheurs du laboratoire d'informatique et d'intelligence artificielle du MIT (CSAIL) et du Massachusetts General Hospital (MGH) ont développé et testé un modèle d’apprentissage profond (deep learning) capable de prédire le risque de cancer du sein à 5 ans. Ils ont décrit leurs travaux en mai 2019 dans Radiology [1].

Trois modèles testés

Pour ce faire, ils ont exploité une base de 88 994 mammographies de dépistage réalisées sur 39 571 femmes entre janvier 2009 et décembre 2012. En utilisant l'information sur les facteurs de risque provenant des questionnaires des patientes et de l'examen des dossiers médicaux électroniques, ils ont élaboré trois modèles d’évaluation du risque de cancer du sein sur cinq ans. « Le premier utilise les facteurs de risque traditionnels ; le deuxième repose sur l’apprentissage profond et se base uniquement sur les mammographies. Le troisième est un modèle de deep learning hybride, basé à la

Il vous reste 57% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Carla Ferrand

Journaliste cheffe de rubrique

Voir la fiche de l’auteur

Bibliographie

  1. Yala A., Lehman C., Schuster T. et coll., « A Deep Learning Mammography-based Model for Improved Breast Cancer Risk Prediction », Radiology, 7 mai 2019, vol. 292, n° 1. DOI : 10.1148/radiol.2019182716.
  2. Tyrer J., Duffy S.W., Cuzick J. et coll., « A breast cancer prediction model incorporating familial and personal risk factors », Statistics in Medicine, 15 avril 2004, vol. 23, n° 7, p. 1111-1130. DOI : 10.1002/sim.1668.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

27 Nov

7:10

L’intelligence artificielle (IA) est de plus en plus intégrée dans la recherche et la pratique en radiographie. Selon une étude parue dans Radiography, GenAI et les LLM offrent des opportunités transformatrices pour la recherche en radiographie à travers plusieurs étapes, de la conception de l’étude à la diffusion. Leur intégration exige toutefois une validation rigoureuse et des garanties éthiques pour limiter les biais, les erreurs et les risques liés à la confidentialité.

14:29

Une étude a évalué sept modèles LLM en open-source pour la synthèse des rapports radiologiques de patients ayant été victime d'un AVC ischémique aigu. Quatre modèles ont résumé efficacement des comptes rendus et pourraient être intégrés dans des flux radiologiques.

11:15

Selon une étude publiée dans l'American Journal of Roentgenology, la prévalence de malignité parmi les nodules surrénaliens indéterminés découverts fortuitement lors d'une tomodensitométrie avec injection de produit de contraste chez des patients sans cancer connu est extrêmement faible.

7:28

Si l'intelligence artificielle est très prometteuse chez l'adulte pour la détection et la caractérisation des nodules, ce n'est pas le cas sur les nodules pulmonaires pédiatriques, selon une récente étude. Celle-ci souligne la nécessité d'avoir une IA spécifique à la pédiatrie.    
Docteur Imago

GRATUIT
VOIR