Intelligence artificielle

Un modèle de deep learning prédit le risque de cancer du sein à 5 ans

Des chercheurs du Massachusetts Institute of Technology (MIT) ont mis au point un algorithme d’évaluation du risque de cancer du sein basé sur l’apprentissage profond. Capable de prédire le risque à cinq ans, il serait plus précis que le modèle Tyrer-Cuzick aujourd’hui utilisé.

icon réservé aux abonnésArticle réservé aux abonnés
Le 05/07/19 à 7:00, mise à jour hier à 14:12 Lecture 1 min.

Le modèle mis au point par l'équipe américaine a été capable d'identifier une femme à haut risque de cancer du sein quatre ans avant qu'il ne se développe (photo). ©MIT/CSAIL

Leur création serait plus efficace que les standards en vigueur. Des chercheurs du laboratoire d'informatique et d'intelligence artificielle du MIT (CSAIL) et du Massachusetts General Hospital (MGH) ont développé et testé un modèle d’apprentissage profond (deep learning) capable de prédire le risque de cancer du sein à 5 ans. Ils ont décrit leurs travaux en mai 2019 dans Radiology [1].

Trois modèles testés

Pour ce faire, ils ont exploité une base de 88 994 mammographies de dépistage réalisées sur 39 571 femmes entre janvier 2009 et décembre 2012. En utilisant l'information sur les facteurs de risque provenant des questionnaires des patientes et de l'examen des dossiers médicaux électroniques, ils ont élaboré trois modèles d’évaluation du risque de cancer du sein sur cinq ans. « Le premier utilise les facteurs de risque traditionnels ; le deuxième repose sur l’apprentissage profond et se base uniquement sur les mammographies. Le troisième est un modèle de deep learning hybride, basé à la

Il vous reste 57% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Carla Ferrand

Bibliographie

  1. Yala A., Lehman C., Schuster T. et coll., « A Deep Learning Mammography-based Model for Improved Breast Cancer Risk Prediction », Radiology, 7 mai 2019, vol. 292, n° 1. DOI : 10.1148/radiol.2019182716.
  2. Tyrer J., Duffy S.W., Cuzick J. et coll., « A breast cancer prediction model incorporating familial and personal risk factors », Statistics in Medicine, 15 avril 2004, vol. 23, n° 7, p. 1111-1130. DOI : 10.1002/sim.1668.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

21 Fév

13:40

Selon une étude publiée dans Radiology, un algorithme d’apprentissage profond disponible dans le commerce peut permettre des examens IRM de l’épaule de bonne qualité en sept minutes.

7:37

Le parlement a adopté définitivement le budget 2025 de la Sécurité sociale ce 17 février. Il prévoit une hausse des dépenses d’Assurance maladie de 3,4 %, pour atteindre un montant de 265 milliards d’euros.
20 Fév

16:01

L’imagerie des paramètres d’atténuation par ultrasons peut être utilisée pour le dépistage clinique afin d’évaluer la prévalence de la MASLD chez les patients en surpoids ou obèses et de suivre de manière dynamique la progression de la maladie, conclut une étude publiée dans Clinical radiology.

13:31

Le modèle de langage appelé Axpert démontre un potentiel de marquage automatique de l’entérocolite nécrosante sur les comptes-rendus de radiographie abdominale infantile. Cette méthode de marquage peut ainsi servir de cadre pour d’autres modalités d’imagerie et maladies chez les enfants, et les maladies rares chez l’adulte, suggère une étude publiée dans JAMIA Open.
Docteur Imago

GRATUIT
VOIR