Apprentissage profond

Un système d’IA jugé performant pour le diagnostic de l’ostéoporose

Des radiologues coréens ont développé des modèles de « deep radiomics » pour le diagnostic automatique de l'ostéoporose à partir de radiographies de la hanche. Leur approche pourrait permettre d’adapter la prise en charge des patients avant que les fractures ne se produisent.

icon réservé aux abonnésArticle réservé aux abonnés
Le 09/06/22 à 15:00, mise à jour hier à 15:09 Lecture 2 min.

Les auteurs concluent que les modèles développés pouvaient diagnostiquer l'ostéoporose avec une haute performance. Selon eux, ils pourraient servir d'outils de triage pour orienter les patients présentant une forte suspicion d'ostéoporose vers un examen d’ostéodensitométrie. © S.Kim et coll./RSNA 2022

En Corée du sud, des chercheurs ont mis au point un système de « deep radiomics » pour diagnostiquer l’ostéoporose de façon automatique. Leurs résultats sont parus le 25 mai dans Radiology : Artificial Intelligence [1]. La radiomique profonde utilise des réseaux de neurones convolutifs pour extraire directement les caractéristiques de l’image.

4 900 radiographies

Des radiologues du service d’imagerie de l’hôpital universitaire national de Séoul ont développé leurs modèles à l'aide de 4 924 radiographies de la hanche réalisées chez 4 308 patients (3 632 femmes ; âge moyen 62 ans) entre septembre 2009 et avril 2020. Le T-score mesuré par ostéodensitométrie a été utilisé comme norme de référence pour l'ostéoporose.

Sept modèles mis au point

« Sept modèles de deep radiomics ont été développés en combinant différents types de caractéristiques : cliniques (Modèle-C), texture (Modèle-T), deep features (Modèle-D), texture et cliniques (Modèle-TC), deep features et cliniques (Modèle-DC), deep featu

Il vous reste 63% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Carla Ferrand

Journaliste cheffe de rubrique

Voir la fiche de l’auteur

Bibliographie

  1. Kim S., Kim B. R., Chae H.-D. Et coll., « Deep-radiomic-based-approach to the diagnosis of osteoporosis using hip radiographs », Radiology : Artificial Intelligence. Epub 25 mai 2022. DOI : 10.1148/ryai.210212.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

17 Juin

7:30

Une étude étasunienne démontre que la précision diagnostique de la bronchoscopie de navigation électromagnétique n’était pas inférieure à celle de la biopsie transthoracique chez les patients présentant des nodules pulmonaires périphériques mesurant de 10 à 30 mm. 
16 Juin

13:21

Nanox AI Ltd a reçu la certification de conformité européenne EU MDR CE pour HealthOST, une solution qui analyse les scanners de routine pour l’analyse de la santé osseuse. L'objectif est d’aider les cliniciens dans l’évaluation des maladies musculosquelettiques de la colonne vertébrale, telles que l’ostéoporose, annonce Imaging Technology News.

7:30

L'entreprise française Avicenna.AI a annoncé le 5 juin dans un communiqué l'obtention du marquage CE pour deux outils d'imagerie de la colonne vertébrale, CINA-VCF Quantix® et CINA-CSpine®.
13 Juin

16:00

Les patients attendant une thrombectomie pour occlusion d'un gros vaisseau devraient être positionnés avec la tête inclinée à 0° plutôt qu'à 30° pour assurer leur stabilité clinique et éviter leur détérioration, suggère un essai randomisé (N = 182 patients) publié dans JAMA Neurology.
Docteur Imago

GRATUIT
VOIR