Apprentissage profond

Un système d’IA jugé performant pour le diagnostic de l’ostéoporose

Des radiologues coréens ont développé des modèles de « deep radiomics » pour le diagnostic automatique de l'ostéoporose à partir de radiographies de la hanche. Leur approche pourrait permettre d’adapter la prise en charge des patients avant que les fractures ne se produisent.

icon réservé aux abonnésArticle réservé aux abonnés
Le 09/06/22 à 15:00, mise à jour le 11/09/23 à 13:23 Lecture 2 min.

Les auteurs concluent que les modèles développés pouvaient diagnostiquer l'ostéoporose avec une haute performance. Selon eux, ils pourraient servir d'outils de triage pour orienter les patients présentant une forte suspicion d'ostéoporose vers un examen d’ostéodensitométrie. © S.Kim et coll./RSNA 2022

En Corée du sud, des chercheurs ont mis au point un système de « deep radiomics » pour diagnostiquer l’ostéoporose de façon automatique. Leurs résultats sont parus le 25 mai dans Radiology : Artificial Intelligence [1]. La radiomique profonde utilise des réseaux de neurones convolutifs pour extraire directement les caractéristiques de l’image.

4 900 radiographies

Des radiologues du service d’imagerie de l’hôpital universitaire national de Séoul ont développé leurs modèles à l'aide de 4 924 radiographies de la hanche réalisées chez 4 308 patients (3 632 femmes ; âge moyen 62 ans) entre septembre 2009 et avril 2020. Le T-score mesuré par ostéodensitométrie a été utilisé comme norme de référence pour l'ostéoporose.

Sept modèles mis au point

« Sept modèles de deep radiomics ont été développés en combinant différents types de caractéristiques : cliniques (Modèle-C), texture (Modèle-T), deep features (Modèle-D), texture et cliniques (Modèle-TC), deep features et cliniques (Modèle-DC), deep featu

Il vous reste 63% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Carla Ferrand

Bibliographie

  1. Kim S., Kim B. R., Chae H.-D. Et coll., « Deep-radiomic-based-approach to the diagnosis of osteoporosis using hip radiographs », Radiology : Artificial Intelligence. Epub 25 mai 2022. DOI : 10.1148/ryai.210212.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

21 Fév

13:40

Selon une étude publiée dans Radiology, un algorithme d’apprentissage profond disponible dans le commerce peut permettre des examens IRM de l’épaule de bonne qualité en sept minutes.

7:37

Le parlement a adopté définitivement le budget 2025 de la Sécurité sociale ce 17 février. Il prévoit une hausse des dépenses d’Assurance maladie de 3,4 %, pour atteindre un montant de 265 milliards d’euros.
20 Fév

16:01

L’imagerie des paramètres d’atténuation par ultrasons peut être utilisée pour le dépistage clinique afin d’évaluer la prévalence de la MASLD chez les patients en surpoids ou obèses et de suivre de manière dynamique la progression de la maladie, conclut une étude publiée dans Clinical radiology.

13:31

Le modèle de langage appelé Axpert démontre un potentiel de marquage automatique de l’entérocolite nécrosante sur les comptes-rendus de radiographie abdominale infantile. Cette méthode de marquage peut ainsi servir de cadre pour d’autres modalités d’imagerie et maladies chez les enfants, et les maladies rares chez l’adulte, suggère une étude publiée dans JAMIA Open.
Docteur Imago

GRATUIT
VOIR