Aide au pronostic

Une IA améliore l’évaluation des tumeurs ovariennes par les jeunes radiologues

Des chercheurs taïwanais ont développé un algorithme aidant à différencier tumeurs de l'ovaire bénignes et malignes. Leur IA se base sur des données cliniques, ainsi que sur des données radiomiques et des caractéristiques extraites par apprentissage profond d'images de scanner.

icon réservé aux abonnésArticle réservé aux abonnés
Le 01/06/23 à 15:00, mise à jour le 11/09/23 à 13:24 Lecture 2 min.

L'IA développée par l'équipe du Dr Wu associe données cliniques, informatiques et radiomiques pour différencier tumeurs ovariennes malignes et bénignes (image d'illustration). D. R.

Le cancer de l'ovaire est le cancer gynécologique le plus mortel, et sa prise en charge précoce par ablation améliore son taux de survie. Cependant, 28 % des ovariectomies seraient réalisées pour des tumeurs bénignes, entraînant des risques à long terme non négligeables chez les femmes opérées à tort : baisse de la fertilité, ménopause précoce, etc. [1]. Afin d’aider les radiologues à distinguer le mieux possible cancers malins et bénins de l'ovaire, des médecins taïwanais ont développé un algorithme d'intelligence artificielle utilisant des données radiomiques extraites de scanners. Leurs résultats sont parus le 24 avril 2023 dans Insights into Imaging [2].

Près de 200 tumeurs ovariennes

Les auteurs ont rétrospectivement enrôlé 149 patientes du MacKay Memorial Hospital de Taipei (Taïwan) présentant en tout 185 tumeurs ovariennes visibles sur des scanners avec rehaussement de contraste et confirmées par anatomopathologie. 129 tumeurs (dont 54 malignes) de 104 patientes ont servi de donné

Il vous reste 70% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Bibliographie

  1. Moore B. J., Steiner C. A., Davis H. et coll., « Statistical brief #214 Trends in hysterectomies and oophorectomies in hospital inpatient and ambulatory settings, 2005-2013 », Healthcare Cost and Utilization Project (HCUP) Statistical Briefs [Internet], novembre 2016. https://www.ncbi.nlm.nih.gov/books/NBK409175/. Site consulté le 1er juin 2023.
  2. Jan Y.-T., Tsai P.-S., Huang W.-H. et coll., « Machine learning combined with radiomics and deep learning features extracted from CT images: a novel AI model to distinguish benign from malignant ovarian tumors », Insights Into Imaging, 2023, vol. 14, n° 68. DOI : 10.1186/s13244-023-01412-x.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

23 Jan

16:13

Philips et MediReport, leader français des logiciels métiers cardiovasculaires, annoncent un partenariat stratégique visant à unifier l’analyse d’images cardiovasculaires et la génération de rapports de procédure, au sein d’un workflow destiné aux hôpitaux et aux cliniques de cardiologie.    

13:12

Une première IRM a été installée au cabinet de radiologie Vidi - Rad’Yon, au sein du centre d’imagerie de la commune des Herbiers (Vendée), annonce le Réseau Vidi dans un communiqué.

7:12

Un nouveau cabinet de radiologie a ouvert ses portes le 5 janvier à Saint-Avold (57), sous le nom d'Imany radiologie, après la liquidation judiciaire de l’ancien centre d’imagerie du groupe Oradianse en mars 2025, informe Le Républicain Lorrain.
22 Jan

15:17

Les salariées du cabinet de radiologie de Ploërmel, quatre secrétaires et trois manipulatrices ont été officiellement licenciées après plusieurs mois sans activité, suite au départ à la retraite de deux radiologues du site, informe le média actu.fr.
Docteur Imago

GRATUIT
VOIR