Aide au pronostic

Une IA améliore l’évaluation des tumeurs ovariennes par les jeunes radiologues

Des chercheurs taïwanais ont développé un algorithme aidant à différencier tumeurs de l'ovaire bénignes et malignes. Leur IA se base sur des données cliniques, ainsi que sur des données radiomiques et des caractéristiques extraites par apprentissage profond d'images de scanner.

icon réservé aux abonnésArticle réservé aux abonnés
Le 01/06/23 à 15:00, mise à jour le 11/09/23 à 13:24 Lecture 2 min.

L'IA développée par l'équipe du Dr Wu associe données cliniques, informatiques et radiomiques pour différencier tumeurs ovariennes malignes et bénignes (image d'illustration). D. R.

Le cancer de l'ovaire est le cancer gynécologique le plus mortel, et sa prise en charge précoce par ablation améliore son taux de survie. Cependant, 28 % des ovariectomies seraient réalisées pour des tumeurs bénignes, entraînant des risques à long terme non négligeables chez les femmes opérées à tort : baisse de la fertilité, ménopause précoce, etc. [1]. Afin d’aider les radiologues à distinguer le mieux possible cancers malins et bénins de l'ovaire, des médecins taïwanais ont développé un algorithme d'intelligence artificielle utilisant des données radiomiques extraites de scanners. Leurs résultats sont parus le 24 avril 2023 dans Insights into Imaging [2].

Près de 200 tumeurs ovariennes

Les auteurs ont rétrospectivement enrôlé 149 patientes du MacKay Memorial Hospital de Taipei (Taïwan) présentant en tout 185 tumeurs ovariennes visibles sur des scanners avec rehaussement de contraste et confirmées par anatomopathologie. 129 tumeurs (dont 54 malignes) de 104 patientes ont servi de donné

Il vous reste 70% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

François Mallordy

Journaliste rédacteur spécialisé

Voir la fiche de l’auteur

Bibliographie

  1. Moore B. J., Steiner C. A., Davis H. et coll., « Statistical brief #214 Trends in hysterectomies and oophorectomies in hospital inpatient and ambulatory settings, 2005-2013 », Healthcare Cost and Utilization Project (HCUP) Statistical Briefs [Internet], novembre 2016. https://www.ncbi.nlm.nih.gov/books/NBK409175/. Site consulté le 1er juin 2023.
  2. Jan Y.-T., Tsai P.-S., Huang W.-H. et coll., « Machine learning combined with radiomics and deep learning features extracted from CT images: a novel AI model to distinguish benign from malignant ovarian tumors », Insights Into Imaging, 2023, vol. 14, n° 68. DOI : 10.1186/s13244-023-01412-x.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

15 Oct

14:53

La Société nord-américaine de radiologie (RSNA) a annoncé en octobre le lancement de RSNA Ventures, une filiale dont la mission est d'encourager l'innovation dans les technologies d'imagerie.

7:30

Un nouveau scanner pourrait faire son arrivée au centre hospitalier de Bagnères-de-Bigorre, dans les Hautes-Pyrénées, en 2026, annonce La Dépêche sur son site.
14 Oct

15:27

13:13

Une étude évaluant l’efficacité de l’algorithme SEMAR (single-energy metal artifact reduction) démontre que cet algorithme de réduction d’artefacts métalliques à énergie unique permet de réduire efficacement les artefacts métalliques des deux types de particules cardiaques. « Les tissus altérés par les artefacts sont moins nombreux sur les particules sans plomb, ce qui améliore la confiance diagnostique dans les tissus environnants », concluent les chercheurs.
Docteur Imago

GRATUIT
VOIR