Aide au pronostic

Une IA améliore l’évaluation des tumeurs ovariennes par les jeunes radiologues

Des chercheurs taïwanais ont développé un algorithme aidant à différencier tumeurs de l'ovaire bénignes et malignes. Leur IA se base sur des données cliniques, ainsi que sur des données radiomiques et des caractéristiques extraites par apprentissage profond d'images de scanner.

icon réservé aux abonnésArticle réservé aux abonnés
Le 01/06/23 à 15:00, mise à jour le 11/09/23 à 13:24 Lecture 2 min.

L'IA développée par l'équipe du Dr Wu associe données cliniques, informatiques et radiomiques pour différencier tumeurs ovariennes malignes et bénignes (image d'illustration). D. R.

Le cancer de l'ovaire est le cancer gynécologique le plus mortel, et sa prise en charge précoce par ablation améliore son taux de survie. Cependant, 28 % des ovariectomies seraient réalisées pour des tumeurs bénignes, entraînant des risques à long terme non négligeables chez les femmes opérées à tort : baisse de la fertilité, ménopause précoce, etc. [1]. Afin d’aider les radiologues à distinguer le mieux possible cancers malins et bénins de l'ovaire, des médecins taïwanais ont développé un algorithme d'intelligence artificielle utilisant des données radiomiques extraites de scanners. Leurs résultats sont parus le 24 avril 2023 dans Insights into Imaging [2].

Près de 200 tumeurs ovariennes

Les auteurs ont rétrospectivement enrôlé 149 patientes du MacKay Memorial Hospital de Taipei (Taïwan) présentant en tout 185 tumeurs ovariennes visibles sur des scanners avec rehaussement de contraste et confirmées par anatomopathologie. 129 tumeurs (dont 54 malignes) de 104 patientes ont servi de donné

Il vous reste 70% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

François Mallordy

Journaliste rédacteur spécialisé

Voir la fiche de l’auteur

Bibliographie

  1. Moore B. J., Steiner C. A., Davis H. et coll., « Statistical brief #214 Trends in hysterectomies and oophorectomies in hospital inpatient and ambulatory settings, 2005-2013 », Healthcare Cost and Utilization Project (HCUP) Statistical Briefs [Internet], novembre 2016. https://www.ncbi.nlm.nih.gov/books/NBK409175/. Site consulté le 1er juin 2023.
  2. Jan Y.-T., Tsai P.-S., Huang W.-H. et coll., « Machine learning combined with radiomics and deep learning features extracted from CT images: a novel AI model to distinguish benign from malignant ovarian tumors », Insights Into Imaging, 2023, vol. 14, n° 68. DOI : 10.1186/s13244-023-01412-x.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

31 Mar

16:00

22 % des médecins répondants à une enquête du Conseil de l'Ordre considèrent leur prise en charge des patients en situation de handicap comme insuffisante ou peu suffisante en raison du manque de temps, de moyens humains et matériels ou encore le manque de formation ou l'inadaptabilité des locaux. 35 % considèrent que l'accès aux soins des patients en situation de handicap est difficile.

13:00

Un décret publié le 19 mars détermine les modalités d'encadrement de l'activité de remise en bon état d'usage de certaines catégories de dispositifs médicaux à usage individuel. La liste des dispositifs concernés sera définie par arrêté.

7:30

La Haute Autorité de santé (HAS) a publié le 20 mars une mise à jour de son Guide pour l'évaluation des infrastructures de simulation en santé, élaborée avec la Société francophone de simulation en santé. Ce document s'adresse aux structures de simulation et aux plateformes de simulation en santé qui souhaitent s'inscrire dans une démarche d'amélioration continue de la qualité, indique la HAS.
28 Mar

16:37

La SFR met en place l’application mobile SFR-JUISCI permettant aux utilisateurs d’accéder aux récentes recherches en radiologie. L’appli est à télécharger via la lien : https://lnkd.in/eW4i956c
Docteur Imago

GRATUIT
VOIR