Un unique scanner thoracique basse dose, sans données cliniques associées ni annotations. C'est tout ce que nécessite Sybil, un nouveau modèle d'apprentissage profond, pour prédire le risque de développer un cancer du poumon chez différentes cohortes de sujets ayant participé à un dépistage du cancer bronchopulmonaire, d'après une étude rétrospective présentée en janvier 2023 dans Journal of Clinical Oncology [1].
Trois bases de données
Les chercheurs du Massachusetts Institute of Technology de Cambridge (États-Unis) et du Massachusetts General Hospital (MGH) de Boston (États-Unis) à l'origine de l'article ont entraîné puis validé Sybil sur des milliers de scanners thoraciques basse dose provenant de trois bases de données différentes : le dépistage au MGH (8 821 scanners basse dose dans la base de données de validation), le dépistage organisé national américain (6 282 examens), et le dépistage au Chang Gung Memorial Hospital (CGMH) à Taïwan (12 280 examens). Grâce à la sélection de suje
Discussion
Aucun commentaire
Commenter cet article