Optimisation du dépistage

Une nouvelle IA prédit le cancer du poumon jusqu’à 6 ans à partir d’un scanner thoracique

Un nouvel algorithme utilisant l'apprentissage profond prédit le risque de développer un cancer bronchopulmonaire dans les six ans suivant la réalisation d'un scanner thoracique. Il a fait l'objet d'une publication dans Journal of Clinical Oncology en janvier 2023.

icon réservé aux abonnésArticle réservé aux abonnés
Le 13/02/23 à 16:00, mise à jour le 11/09/23 à 13:23 Lecture 2 min.

L'IA Sybil, validée sur trois cohortes indépendantes de patients, prédit le risque individuel de cancer du poumon à partir d'un scanner thoracique, avec une aire sous la courbe supérieure à 0,75 sur 6 ans (image d'illustration). D. R.

Un unique scanner thoracique basse dose, sans données cliniques associées ni annotations. C'est tout ce que nécessite Sybil, un nouveau modèle d'apprentissage profond, pour prédire le risque de développer un cancer du poumon chez différentes cohortes de sujets ayant participé à un dépistage du cancer bronchopulmonaire, d'après une étude rétrospective présentée en janvier 2023 dans Journal of Clinical Oncology [1].

Trois bases de données

Les chercheurs du Massachusetts Institute of Technology de Cambridge (États-Unis) et du Massachusetts General Hospital (MGH) de Boston (États-Unis) à l'origine de l'article ont entraîné puis validé Sybil sur des milliers de scanners thoraciques basse dose provenant de trois bases de données différentes : le dépistage au MGH (8 821 scanners basse dose dans la base de données de validation), le dépistage organisé national américain (6 282 examens), et le dépistage au Chang Gung Memorial Hospital (CGMH) à Taïwan (12 280 examens). Grâce à la sélection de suje

Il vous reste 71% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

François Mallordy

Bibliographie

  1. Mikhael P. G., Wohlwend J., Yala A. et coll., « Sybil: A Validated Deep Learning Model to Predict Future Lung Cancer Risk From a Single Low-Dose Chest Computed Tomography », Journal of Clinical Oncology, 12 janvier 2023. DOI : 10.1200/JCO.22.01345.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

21 Fév

13:40

Selon une étude publiée dans Radiology, un algorithme d’apprentissage profond disponible dans le commerce peut permettre des examens IRM de l’épaule de bonne qualité en sept minutes.

7:37

Le parlement a adopté définitivement le budget 2025 de la Sécurité sociale ce 17 février. Il prévoit une hausse des dépenses d’Assurance maladie de 3,4 %, pour atteindre un montant de 265 milliards d’euros.
20 Fév

16:01

L’imagerie des paramètres d’atténuation par ultrasons peut être utilisée pour le dépistage clinique afin d’évaluer la prévalence de la MASLD chez les patients en surpoids ou obèses et de suivre de manière dynamique la progression de la maladie, conclut une étude publiée dans Clinical radiology.

13:31

Le modèle de langage appelé Axpert démontre un potentiel de marquage automatique de l’entérocolite nécrosante sur les comptes-rendus de radiographie abdominale infantile. Cette méthode de marquage peut ainsi servir de cadre pour d’autres modalités d’imagerie et maladies chez les enfants, et les maladies rares chez l’adulte, suggère une étude publiée dans JAMIA Open.
Docteur Imago

GRATUIT
VOIR