Intelligence artificielle

Un modèle de machine learning pour rationaliser les soins aux urgences pédiatriques

Une étude présentée dans JAMA a évalué un modèle de directives médicales basées sur l’apprentissage machine. Ce processus automatisé permet de prédire et d’ordonner les examens d'imagerie au début du parcours du patient afin d’améliorer la prise de décision clinique et rationaliser les soins.

icon réservé aux abonnésArticle réservé aux abonnés
Le 06/05/22 à 15:00, mise à jour aujourd'hui à 14:09 Lecture 1 min.

Chaque modèle a été entraîné à prédire si le patient allait avoir un diagnostic associé à l’un des 6 examens suivants : test de jauge urinaire, électrocardiogramme, échographie abdominale, échographie testiculaire, dosage de la bilirubine et radiographie de l’avant-bras (photo d'illustration). © https://pxhere.com/en/photo/643025

Peut-être une solution pour accélérer la prise en charge aux urgences ? Des chercheurs canadiens ont entraîné et expérimenté des modèles d’apprentissage machine conçus pour « trier » les patients admis aux urgences pédiatriques qui auront de besoin d’un examen spécifique avant qu’ils aient été évalués par un professionnel de santé. Ils présentent leurs résultats dans un article de la revue JAMA [1]. Pour ce faire, ils ont exploité les données issues des dossiers électroniques de 77 219 patients âgés de 0 à 18 ans se présentant au service d’urgence pédiatrique de l’Hospital for Sick Children, un hôpital de soins tertiaires de Toronto, au Canada, du 1er juillet 2018 au 30 juin 2019. Ils ont « nourri » leurs modèles avec de nombreuses données telles que le rythme cardiaque, la saturation sanguine, la tension, la température corporelle, les symptômes, etc.

Rationaliser les soins pour 22,3 % des patients

Chaque modèle a été entraîné à prédire si le patient allait avoir un diagnostic associé à

Il vous reste 61% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Solenn Duplessy

Voir la fiche de l’auteur

Bibliographie

  1. Singh D., Nagaraj S., Mashouri P. et coll., « Assessment of machine learning-based medical directives to expedite care in pediatric emergency medicine », JAMA Network Open, 2022, vol. 5, n° 3. DOI : 10.1001/jamanetworkopen.2022.2599.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

16 Jan

15:29

Un tissu mammaire dense réduit la performance de la tomosynthèse mammaire numérique, selon une étude publiée dans Academic Radiology. « Ces résultats soulignent la nécessité de rapporter et de prendre en compte la densité mammaire dans les recommandations de dépistage. »

13:27

Vidi Capital finalise son rapprochement avec le groupe IMAC à Cholet, qui rejoint le réseau. Cette opération porte à 110 le nombre de médecins en exercice, répartis au sein de sept entités et IMAC devient ainsi le deuxième groupe des Pays-de-la-Loire à s’adosser à Vidi Capital, après Vidi – Rad’Yon, annonce un communiqué de presse.

7:13

Bayer a annoncé la conclusion d’accords définitifs pour l’acquisition auprès d’Attralus de deux agents d’imagerie moléculaire expérimentaux, AT-01 et AT-05, destinés au diagnostic de l’amyloïdose cardiaque. Cette opération stratégique renforce la position de Bayer dans l’imagerie moléculaire et s’inscrit dans le développement de sa stratégie de cardiologie de précision, annonce un communiqué.
15 Jan

15:14

Les élections de l’European Society of Radiology (ESR) se tiendront du 8 au 21 janvier 2026. Deux candidates soutenues par la SFR, les professeurs Isabelle Thomassin-Naggara et Corinne Balleyguier, présentent leur candidature. Les radiologues français membres de l’ESR sont appelé à se mobiliser en votant par courriel : voting@polyas.com.

13:13

Bien que les unités mobiles de mammographie puissent améliorer l’accès aux soins pour des populations médicalement défavorisées, une étude pilote publiée dans Academic Radiology, met en lumière des opportunités pour promouvoir un suivi rapide et équitable des mammographies de dépistage anormales grâce à une meilleure navigation des patients, un soutien social et une aide financière.
Docteur Imago

GRATUIT
VOIR