Intelligence artificielle

Un modèle de machine learning pour rationaliser les soins aux urgences pédiatriques

Une étude présentée dans JAMA a évalué un modèle de directives médicales basées sur l’apprentissage machine. Ce processus automatisé permet de prédire et d’ordonner les examens d'imagerie au début du parcours du patient afin d’améliorer la prise de décision clinique et rationaliser les soins.

icon réservé aux abonnésArticle réservé aux abonnés
Le 06/05/22 à 15:00, mise à jour le 11/09/23 à 13:23 Lecture 1 min.

Chaque modèle a été entraîné à prédire si le patient allait avoir un diagnostic associé à l’un des 6 examens suivants : test de jauge urinaire, électrocardiogramme, échographie abdominale, échographie testiculaire, dosage de la bilirubine et radiographie de l’avant-bras (photo d'illustration). © https://pxhere.com/en/photo/643025

Peut-être une solution pour accélérer la prise en charge aux urgences ? Des chercheurs canadiens ont entraîné et expérimenté des modèles d’apprentissage machine conçus pour « trier » les patients admis aux urgences pédiatriques qui auront de besoin d’un examen spécifique avant qu’ils aient été évalués par un professionnel de santé. Ils présentent leurs résultats dans un article de la revue JAMA [1]. Pour ce faire, ils ont exploité les données issues des dossiers électroniques de 77 219 patients âgés de 0 à 18 ans se présentant au service d’urgence pédiatrique de l’Hospital for Sick Children, un hôpital de soins tertiaires de Toronto, au Canada, du 1er juillet 2018 au 30 juin 2019. Ils ont « nourri » leurs modèles avec de nombreuses données telles que le rythme cardiaque, la saturation sanguine, la tension, la température corporelle, les symptômes, etc.

Rationaliser les soins pour 22,3 % des patients

Chaque modèle a été entraîné à prédire si le patient allait avoir un diagnostic associé à

Il vous reste 61% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Solenn Duplessy

Voir la fiche de l’auteur

Bibliographie

  1. Singh D., Nagaraj S., Mashouri P. et coll., « Assessment of machine learning-based medical directives to expedite care in pediatric emergency medicine », JAMA Network Open, 2022, vol. 5, n° 3. DOI : 10.1001/jamanetworkopen.2022.2599.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

03 Avr

7:31

Le député Thibault Bazin (groupe LR) a déposé le 28 mars un amendement concernant la reconnaissance des Plateaux d’imagerie médicale ambulatoire de proximité (PIMAP) au texte de la proposition de loi d’initiative transpartisane visant à lutter contre les déserts médicaux. L'amendement n°100, examiné par l'Assemblée nationale, propose ainsi que le Gouvernement remette au Parlement « un rapport évaluant l’opportunité d’instituer un statut spécifique pour le plateau d’imagerie médicale ambulatoire de proximité donnant un cadre légal aux cabinets libéraux de radiologie [...] souhaitant maintenir ou améliorer un maillage territorial de proximité ».
02 Avr

15:49

La Fédération de radiologie interventionnelle de la Société française de radiologie (FRI-SFR) a lancé une enquête en ligne pour « faire la lumière sur les freins à l'adhésion au CIRSE (la Société européenne de radiologie cardiovasculaire et interventionnelle, NDLR) chez les radiologues interventionnels français », comme annoncé par Vincent Vidal dans nos colonnes.

12:49

Le consortium ImaSpiiR-X, qui rassemble des acteurs de l'industrie et du milieu académique sous l'égide de l'industriel Trixell, a reçu le soutien de France 2030 à hauteur de 18,2 millions d’euros sur une durée de 60 mois, selon un communiqué du CEA. Cette aide vise à « passer d’une imagerie médicale par rayons X en noir et blanc à une imagerie spectrale en couleur », notamment via le développement de « capteurs plans de nouvelle génération » et d'algorithmes « avancés ».

7:30

Suite à sa fermeture en février, le cabinet de radiologie Boyer à Saint-Céré (46) a transféré son activité et son personnel à l'hôpital local, informe La Dépêche.
Docteur Imago

GRATUIT
VOIR