Intelligence artificielle

Un modèle de machine learning pour rationaliser les soins aux urgences pédiatriques

Une étude présentée dans JAMA a évalué un modèle de directives médicales basées sur l’apprentissage machine. Ce processus automatisé permet de prédire et d’ordonner les examens d'imagerie au début du parcours du patient afin d’améliorer la prise de décision clinique et rationaliser les soins.

icon réservé aux abonnésArticle réservé aux abonnés
Le 06/05/22 à 15:00, mise à jour aujourd'hui à 14:08 Lecture 1 min.

Chaque modèle a été entraîné à prédire si le patient allait avoir un diagnostic associé à l’un des 6 examens suivants : test de jauge urinaire, électrocardiogramme, échographie abdominale, échographie testiculaire, dosage de la bilirubine et radiographie de l’avant-bras (photo d'illustration). © https://pxhere.com/en/photo/643025

Peut-être une solution pour accélérer la prise en charge aux urgences ? Des chercheurs canadiens ont entraîné et expérimenté des modèles d’apprentissage machine conçus pour « trier » les patients admis aux urgences pédiatriques qui auront de besoin d’un examen spécifique avant qu’ils aient été évalués par un professionnel de santé. Ils présentent leurs résultats dans un article de la revue JAMA [1]. Pour ce faire, ils ont exploité les données issues des dossiers électroniques de 77 219 patients âgés de 0 à 18 ans se présentant au service d’urgence pédiatrique de l’Hospital for Sick Children, un hôpital de soins tertiaires de Toronto, au Canada, du 1er juillet 2018 au 30 juin 2019. Ils ont « nourri » leurs modèles avec de nombreuses données telles que le rythme cardiaque, la saturation sanguine, la tension, la température corporelle, les symptômes, etc.

Rationaliser les soins pour 22,3 % des patients

Chaque modèle a été entraîné à prédire si le patient allait avoir un diagnostic associé à

Il vous reste 61% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Solenn Duplessy

Voir la fiche de l’auteur

Bibliographie

  1. Singh D., Nagaraj S., Mashouri P. et coll., « Assessment of machine learning-based medical directives to expedite care in pediatric emergency medicine », JAMA Network Open, 2022, vol. 5, n° 3. DOI : 10.1001/jamanetworkopen.2022.2599.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

18 Nov

15:48

L'angioscanner pulmonaire double énergie permettrait une réduction de 25 % du volume de produit de contraste par rapport à l'angioscanner pulmonaire classique, tout en offrant une meilleure qualité d'image quantitative sans augmenter l'exposition aux rayonnements (étude).

13:43

Lors des Assises nationales des départements de France le 14 novembre à Albi, le premier ministre Sébastien Lecornu, a annoncé son projet de réformer les Agences régionales de santé (ARS), rapporte Libération.

7:41

L'ASNR publie un avis d'incident sur un événement significatif concernant la surexposition d’un radiologue au niveau du cristallin lors d'examens sous guidage radioscopique au CHU de Caen (14).
17 Nov

16:54

Le centre de lutte contre le cancer Georges-François Leclerc (CGFL) à Dijon accueille le troisième TEP-TDM corps entier de France métropolitaine, annonce le média Le journal du centre.

Docteur Imago

GRATUIT
VOIR