Intelligence artificielle

À Gustave-Roussy, un score maison prédit l’évolution des patients Covid

Le score AI-severity combine 5 variables cliniques et biologiques et l’analyse des examens de scanner thoracique par un algorithme d’apprentissage profond pour évaluer la gravité de l’atteinte pulmonaire liée à la Covid-19 et prédire son évolution.

icon réservé aux abonnésArticle réservé aux abonnés
Le 22/02/21 à 8:00, mise à jour hier à 14:15 Lecture 3 min.

AI-severity combine les informations extraites du scanner thoracique par un algorithme d’intelligence artificielle avec des données cliniques et biologiques pour attribuer un score de gravité à l’atteinte pulmonaire et prédire son évolution (photo d'illustration). D. R.

À Villejuif (94), le centre de lutte contre le cancer Gustave-Roussy évalue les patients atteints de Covid-19 ou suspectés de l’être grâce à un score hybride développé en interne. AI-severity combine les informations extraites du scanner thoracique par un algorithme d’intelligence artificielle avec des données cliniques et biologiques pour attribuer un score de gravité à l’atteinte pulmonaire et prédire son évolution.

Une approche holistique

Présenté dans un article de la revue Nature Communications [1], cet outil est le fruit des efforts conjoints des équipes de recherche de Gustave-Roussy, université Paris-Saclay, de l’hôpital du Kremlin-Bicêtre, assistance publique – hôpitaux de Paris, de l’Inria et de la start-up Owkin, réunis au sein de l’étude ScanCovIA. « Début 2020, nous n’avions pas de score. Des patients atteints de Covid-19 arrivaient en bon état général mais mourraient chez eux quelques jours plus tard, se souvient Nathalie Lassau, radiologue à Gustave Roussy – université Par

Il vous reste 78% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Jérome Hoff

Rédacteur en chef adjoint BOM Presse Clichy

Voir la fiche de l’auteur

Bibliographie

  1. Lassau N., Ammari S., Chouzenoux E. et coll., « Integrating deep learning CT-scan model, biological and clinical variables to predict severity of COVID-19 patients », Nature Communications, janvier 2021, vol. 12, n° 634. DOI : 10.1038/s41467-020-20657-4.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

15 Jan

7:11

Stéphanie Rist, la ministre de la santé, a présenté une stratégie nationale pour lutter contre la désinformation médicale. Elle prévoit notamment la création d’un observatoire de la désinformation en santé et d’un dispositif d’infovigilance afin de répondre plus rapidement aux fausses informations
14 Jan

16:04

L’ablation robotisée par radiofréquence des tumeurs pulmonaires est une technique réalisable et sûre, indique une étude parue dans l'European Journal of Radiology. Cela permettrait de minimiser les ajustements des aiguilles, réduisant ainsi le temps de ponction et réduisant l’exposition aux radiations chez les patients.

14:48

Une étude a évalué la performance de DeepXray™ Spina pour prédire l’ostéoporose à partir de FLS-X. « Le logiciel est un outil pratique et fiable pour prédire l’ostéoporose, avec de hautes performances et une grande robustesse [...] Elle peut contribuer à prolonger l’espérance de vie saine des personnes âgées grâce à une détection précoce », indiquent les auteurs.

7:37

Une enquête menée en Angleterre sur l’expérience des patients en radiothérapie a permis d'identifier que la majorité des patients ont bénéficié de soins de haute qualité et louent le personnel soignant [étude].
Docteur Imago

GRATUIT
VOIR