Intelligence artificielle

À Gustave-Roussy, un score maison prédit l’évolution des patients Covid

Le score AI-severity combine 5 variables cliniques et biologiques et l’analyse des examens de scanner thoracique par un algorithme d’apprentissage profond pour évaluer la gravité de l’atteinte pulmonaire liée à la Covid-19 et prédire son évolution.

icon réservé aux abonnésArticle réservé aux abonnés
Le 22/02/21 à 8:00, mise à jour hier à 14:12 Lecture 3 min.

AI-severity combine les informations extraites du scanner thoracique par un algorithme d’intelligence artificielle avec des données cliniques et biologiques pour attribuer un score de gravité à l’atteinte pulmonaire et prédire son évolution (photo d'illustration). D. R.

À Villejuif (94), le centre de lutte contre le cancer Gustave-Roussy évalue les patients atteints de Covid-19 ou suspectés de l’être grâce à un score hybride développé en interne. AI-severity combine les informations extraites du scanner thoracique par un algorithme d’intelligence artificielle avec des données cliniques et biologiques pour attribuer un score de gravité à l’atteinte pulmonaire et prédire son évolution.

Une approche holistique

Présenté dans un article de la revue Nature Communications [1], cet outil est le fruit des efforts conjoints des équipes de recherche de Gustave-Roussy, université Paris-Saclay, de l’hôpital du Kremlin-Bicêtre, assistance publique – hôpitaux de Paris, de l’Inria et de la start-up Owkin, réunis au sein de l’étude ScanCovIA. « Début 2020, nous n’avions pas de score. Des patients atteints de Covid-19 arrivaient en bon état général mais mourraient chez eux quelques jours plus tard, se souvient Nathalie Lassau, radiologue à Gustave Roussy – université Par

Il vous reste 78% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Jérome Hoff

Rédacteur en chef adjoint BOM Presse Clichy

Voir la fiche de l’auteur

Bibliographie

  1. Lassau N., Ammari S., Chouzenoux E. et coll., « Integrating deep learning CT-scan model, biological and clinical variables to predict severity of COVID-19 patients », Nature Communications, janvier 2021, vol. 12, n° 634. DOI : 10.1038/s41467-020-20657-4.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

16 Jan

15:29

Un tissu mammaire dense réduit la performance de la tomosynthèse mammaire numérique, selon une étude publiée dans Academic Radiology. « Ces résultats soulignent la nécessité de rapporter et de prendre en compte la densité mammaire dans les recommandations de dépistage. »

13:27

Vidi Capital finalise son rapprochement avec le groupe IMAC à Cholet, qui rejoint le réseau. Cette opération porte à 110 le nombre de médecins en exercice, répartis au sein de sept entités et IMAC devient ainsi le deuxième groupe des Pays-de-la-Loire à s’adosser à Vidi Capital, après Vidi – Rad’Yon, annonce un communiqué de presse.

7:13

Bayer a annoncé la conclusion d’accords définitifs pour l’acquisition auprès d’Attralus de deux agents d’imagerie moléculaire expérimentaux, AT-01 et AT-05, destinés au diagnostic de l’amyloïdose cardiaque. Cette opération stratégique renforce la position de Bayer dans l’imagerie moléculaire et s’inscrit dans le développement de sa stratégie de cardiologie de précision, annonce un communiqué.
15 Jan

15:14

Les élections de l’European Society of Radiology (ESR) se tiendront du 8 au 21 janvier 2026. Deux candidates soutenues par la SFR, les professeurs Isabelle Thomassin-Naggara et Corinne Balleyguier, présentent leur candidature. Les radiologues français membres de l’ESR sont appelé à se mobiliser en votant par courriel : voting@polyas.com.

13:13

Bien que les unités mobiles de mammographie puissent améliorer l’accès aux soins pour des populations médicalement défavorisées, une étude pilote publiée dans Academic Radiology, met en lumière des opportunités pour promouvoir un suivi rapide et équitable des mammographies de dépistage anormales grâce à une meilleure navigation des patients, un soutien social et une aide financière.
Docteur Imago

GRATUIT
VOIR