Les challenges se multiplient ces dernières années en intelligence artificielle appliquée à l’imagerie médicale. Mercredi 15 juillet, une session du Congrès européen de radiologie (ECR) s’est intéressée à la méthodologie de ces concours. De façon classique, leurs organisateurs définissent une problématique, une base de données, et évaluent objectivement les performances des algorithmes développés par les participants. Mais pour Lena Maier-Hein, qui dirige le département des interventions...

Jérôme HOFF
Bibliographie
  1. Maier-Hein L., Eisenmann M., Reinke A. et coll., « Why rankings of biomedical image analysis competitions should be interpreted with care », Nature Communications, 2018, vol. 9. DOI : 10.1038/s41467-018-07619-7.
  2. Maier-Hein L., Reinke A., Kozubek M. et coll., « BIAS: transparent reporting of biomedical image analysis challenges », Med Image Anal, 2020.
  3. Wiesenfarth M., Reinke A., Landman B. A. et coll., « Methods and open-source tookits for analyzing and visualizing challenge results », ArXiv, 10 novembre 2019. https://arxiv.org/pdf/1910.05121v1.pdf. Consulté le 17 juillet 2020.