Recherche en neuro-imagerie

Le CNRS affûte ses outils d’IA pour l’imagerie de la SEP

Le Laboratoire bordelais de recherche en informatique (LaBRI) développe des solutions d’apprentissage profond pour l’imagerie de la sclérose en plaques. Après la détection automatique des lésions, les chercheurs travaillent sur la prédiction du score de sévérité de la maladie.

icon réservé aux abonnésArticle réservé aux abonnés
Le 28/06/22 à 15:00, mise à jour hier à 14:10 Lecture 3 min.

Les solutions de deep learning développées par le laboratoire LaBRI pour la SEP sont accessibles sur la plateforme en ligne volBrain. © LaBRI/VolBrain

À Bordeaux, une équipe du CNRS menée par Pierrick Coupé s’intéresse aux problématiques de la sclérose en plaques (SEP) et perfectionne ses outils d’apprentissage profond (deep learning) pour la neuro-imagerie. Reda Abdellah Kamraoui, doctorant au Laboratoire bordelais de recherche en informatique (LaBRI), travaille sur l’automatisation de la segmentation des lésions de SEP et l’extraction de biomarqueurs : « L’automatisation de ces tâches permet de faciliter le travail des neuroradiologues et de leur faire gagner du temps, souligne-t-il. Le suivi des patients atteints de SEP est important pour vérifier que le traitement fonctionne. Avoir des biomarqueurs tels que les volumes lésionnels ou le nombre de nouvelles lésions permet de suivre l’évolution de la maladie. »

Développer des modèles plus performants

Les solutions existantes se basent sur des techniques d’apprentissage qui manquent parfois de précision et ne sont pas généralisables sur des données qui n’ont pas été vues lors de l’entr

Il vous reste 76% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Carla Ferrand

Journaliste cheffe de rubrique

Voir la fiche de l’auteur

Discussion

Aucun commentaire

Laisser un commentaire

Le fil Docteur Imago

29 Jan

7:17

Une étude prospective compare l’efficacité de l’échographie mammaire automatisée (ABUS) et de l’échographie manuelle (HHUS) en seconde intention pour détecter des lésions identifiées en IRM mammaire. Bien que la HHUS détecte significativement plus de lésions, les deux techniques présentent une sensibilité similaire, l’ABUS ayant une valeur prédictive positive plus élevées. Ces résultats démontrent que les deux méthodes sont complémentaires et ont le potentiel d’augmenter le taux de détection des lésions lorsqu’elles sont utilisées conjointement.    
28 Jan

16:19

La journée mondiale de lutte contre le cancer se déroulera le mercredi 4 février 2026. Créée en 2000, cette journée est consacrée à la prévention, la détection, la lutte contre la stigmatisation et le traitement du cancer.

14:12

L’IRM 5 T améliore efficacement l’évaluation chez des patients suspectés de cancer de la prostate par rapport à l'IRM 3 T, indique une étude.

7:44

Une étude canadienne analyse les retombées du recours à la téléradiologie comme solution pour réduire les émissions de gaz à effet de serre dues aux transports des radiologues.
Docteur Imago

GRATUIT
VOIR