Aide au diagnostic

L’IA prometteuse en échographie du sein malgré ses limites

Une session de l’ECR 2023 a fait le point sur les avancées de l’intelligence artificielle en échographie mammaire. Si ses résultats dépendent encore trop de l’opérateur, la lecture automatique des échographies montre de bonnes performances pour la détection et la classification des lésions.

icon réservé aux abonnésArticle réservé aux abonnés
Le 13/03/23 à 16:00, mise à jour le 11/09/23 à 13:23 Lecture 4 min.

Par rapport à la mammographie, l'utilisation de l'IA en échographie se confronte à des limites techniques significatives, a expliqué Tamar Sella. Capture d'écran ECR 2023

L’exercice est désormais un incontournable des rassemblements scientifiques : plusieurs sessions du Congrès européen de radiologie 2023 ont fait l’état de lieux des applications de l’intelligence artificielle (IA) dans différentes surspécialités. Vendredi 3 mars, c’était l’imagerie du sein. Parmi les trois intervenantes, Tamar Sella, cheffe de l’unité d’imagerie du sein du CHU Hadassah, à Jérusalem (Israël), a fait le point sur l’IA en échographie mammaire.

Une fiabilité dépendante de l’opérateur

« L’IA a le potentiel d’améliorer la précision de l’échographie mammaire en fournissant une analyse automatique et objective des données d’imagerie, sans être affectée par la fatigue des radiologues », entame-t-elle. Toutefois, par rapport à la mammographie, son utilisation en échographie se confronte à des limites techniques significatives. Pour commencer, les données disponibles pour l’entraînement sont encore peu nombreuses. « C’est un problème, en particulier pour les lésions rares ou peu co

Il vous reste 83% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Jérome Hoff

Rédacteur en chef adjoint BOM Presse Clichy

Voir la fiche de l’auteur

Bibliographie

  1. Brunetti N., Calabrese M., Martinoli C. et coll., « Artificial intelligence in ultrasound: from diagnosis to prognosis-a rapid review », Diagnostics, 2023, vol. 123, n°1 : 58. DOI : 10.3390/diagnostics13010058
  2. Byra M., Galperin M., Ojeda-Fournier H. et coll., « Breast mass classification in sonography with transfer learning using a deep convolutional neural network and color conversion », Medical Physics, février 2019, vol. 46, n° 2, p. 746-755. DOI : 10.1002/mp.13361.
  3. Huang Y., Han L., Dou H. et coll., « Two-stage CNNs for computerized BI-RADS categorization in breast ultasound images », BioMedical Engineering Online, 2019, vol. 18, n° 8. DOI : 10.1186/s12938-019-0626-5
  4. Hejduk P., Marcon M., Unkelbach J. t coll., « Fully automatic classification of automated breast ultrasound (ABUS) imaging according to BI-RADS using a deep convolutional neural network », European Radiology, juillet 2022, vol. 32, p. 4868-4878. DOI : https://10.1007/s00330-022-08558-0
  5. Wu L., Ye W., Liu Y. et coll., « An integrated deep learning model for the prediction of pathological complete response to neoadjuvant chemotherapy with serial ultrasonography in breast cancer patients: a multicentre retrospective study », Breast Cancer Research, novembre 2022, vol. 24, n° 1 : 81. DOI : 10.1186/s13058-022-01580-6.
  6. Jiang M., Zhang D., Tang S.-C. et coll., « Deep learning with convolutional neural network in the assessment of breast cancer molecuoar subtipes based on US images: a multicenter prospective study », European Radiology, juin 2021, vol. 31, n° 6, p. 3673-3682. DOI : https://doi.org/10.1007/s00330-020-07544-8.
  7. Ye H., Hang J., Zhang M. et coll., « Automatic identification of triple negative breast cancer in ultrasonography using a deep convolutional neural network », Scientific Reports, vol. 11, n° 20474. DOI : 10.1038/s41598-021-00018-x

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

09 Mai

16:00

La start-up Chipiron vient de boucler une nouvelle levée de fonds de 15 millions d'euros pour terminer la R & D de sa technologie d'IRM ultra bas champ, rapporte L'Usine digitale. Selon le média, cette levée de fonds permettra notamment de fabriquer un troisième prototype et démarrer des essais cliniques, pour viser une future commercialisation d'abord aux États-Unis, puis en Europe. Il y a deux ans, le cofondateur de Chipiron avait confié à Docteur Imago ses objectifs pour développer une IRM à 1 mT.

13:30

Un nouveau centre d'imagerie médicale a ouvert le lundi 5 mai à Neufchâtel-en-Bray (76), selon le média en ligne actu.fr. Résultant du déménagement d'un cabinet dans de nouveaux locaux, ce changement s'accompagne de l'installation de nouvelles modalités, scanner et IRM.

7:30

La société australienne Telix Pharmaceuticals a annoncé le 29 avril avoir obtenu de l'Agence nationale de sécurité du médicament et des produits de santé (ANSM) l'autorisation de mise sur le marché (AMM) en France de son agent de TEP Illuccix®(kit pour la préparation de 68Ga-PSMA-11) pour la détection et la localisation de lésions positives au PSMA chez des patients adultes souffrant de cancer de la prostate (indications précisées dans le communiqué ci-joint).
07 Mai

16:00

La clinique de l’Estrée à Stains (93) s'est dotée d'une IRM à champ ouvert, annonce le groupe Elsan (communiqué).
Docteur Imago

GRATUIT
VOIR