Imagerie thoracique

Quelle place pour l’IA dans la lutte contre la Covid-19 ?

Une session du RSNA 2020 consacrée au rôle de l'IA dans la pandémie de Covid-19 a réuni des intervenants chinois et américains. Ils ont dressé le bilan des atouts et des limites de l'intelligence artificielle, et appelé à un contrôle qualité plus strict des produits.

icon réservé aux abonnésArticle réservé aux abonnés
Le 01/12/20 à 8:00, mise à jour hier à 14:15 Lecture 3 min.

Pour l’orateur chinois Shi-Yuan Liu, radiologue à l’hôpital Changzheng à Shanghai, l’IA permet aux radiologues de travailler plus efficacement. capture d'écran RSNA 2020

Les deux thèmes phares du RSNA 2020 se sont partagé l’affiche au premier jour du congrès. L'intelligence artificielle et la Covid-19 étaient au programme d’une session commune le 29 novembre, lors de laquelle un radiologue américain et un radiologue chinois ont présenté leurs retours d’expérience respectifs sur l’utilisation de l’IA pour l’aide à la décision dans le contexte de Covid-19.

Détection et prédiction

Face à la pandémie, les besoins d’un outil d’IA se sont concentrés dans un premier temps sur le diagnostic initial, explique Greg Zaharchuk, professeur de radiologie à l’université de Stanford. « C’était un paramètre très important dans la première phase épidémique, lorsque les systèmes de santé ont été submergés et que les radiologues ne connaissaient pas cette nouvelle maladie », observe-t-il.
Désormais, le diagnostic initial de la Covid-19 n’est plus une problématique de premier plan et les besoins d’outils d’IA s’orientent plus vers la prédiction de l’évolution de la maladie, p

Il vous reste 79% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Carla Ferrand

Journaliste cheffe de rubrique

Voir la fiche de l’auteur

Bibliographie

  1. Mei X., Lee H.-C., Yang Y. et coll., « Artificial intelligence-enabled rapid diagnosis of patients with COVID-19 », Nature Medicine, mai 2020, vol. 26, p. 1224-1228. DOI : 10.1038/s41591-020-0931-3.
  2. Li M. D., Arun N. T., Gidwani M. et coll., « Automated assessment and tracking of COVID-19 pulmonary disease severity on chest radiographs using convolutional siamese neutral networks », Radiology : Artificial Intelligence, juillet 2020, vol. 2, n° 4. DOI : 10.1148/ryai.2020200079.
  3. Li L., Qin L., Xu Z. et coll., « Using artificial intelligence to detect COVID-19 and Community-acquired pneumonia based on pulmonary CT: Evaluation of the diagnostic accuracy », Radiology, août 2020, vol. 296, n° 2. DOI : 10.1148/radiol.2020200905.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

12 Jan

16:00

Des modèles de langage ajustés avec précision à l'aide d'informations cliniques et radiologiques ont prédit avec exactitude les comptes rendus les plus prioritaires, dans le cadre d'une étude présentée dans European Radiology.

13:17

Une première étude chez l'homme confirme la sécurité et le profil pharmacocinétique favorable de l'imagerie TEP avec le radiotraceur 64Cu-Macrin dans la prise en charge du cancer et de la sarcoïdose.

7:30

Les marqueurs radiomiques hypothalamiques dérivés de l'IRM pondérée T1 et extraits associés à des caractéristiques cliniques offrent une approche d'exploration prometteuse pour prédire l'apnée obstructive du sommeil. Étude.
09 Jan

16:11

Une étude publiée dans BMC Urology a évalué la capacité de plusieurs grands modèles de langage à classer des comptes rendus d’IRM de la prostate selon le système PI-RADS v2.1. Le modèle GPT-o1 montre la meilleure concordance avec les radiologues, mais tous les modèles présentent des limites pour les lésions PI-RADS 3.
Docteur Imago

GRATUIT
VOIR