Apprentissage profond

Un système d’IA jugé performant pour le diagnostic de l’ostéoporose

Des radiologues coréens ont développé des modèles de « deep radiomics » pour le diagnostic automatique de l'ostéoporose à partir de radiographies de la hanche. Leur approche pourrait permettre d’adapter la prise en charge des patients avant que les fractures ne se produisent.

icon réservé aux abonnésArticle réservé aux abonnés
Le 09/06/22 à 15:00, mise à jour le 10/02/26 à 14:11 Lecture 2 min.

Les auteurs concluent que les modèles développés pouvaient diagnostiquer l'ostéoporose avec une haute performance. Selon eux, ils pourraient servir d'outils de triage pour orienter les patients présentant une forte suspicion d'ostéoporose vers un examen d’ostéodensitométrie. © S.Kim et coll./RSNA 2022

En Corée du sud, des chercheurs ont mis au point un système de « deep radiomics » pour diagnostiquer l’ostéoporose de façon automatique. Leurs résultats sont parus le 25 mai dans Radiology : Artificial Intelligence [1]. La radiomique profonde utilise des réseaux de neurones convolutifs pour extraire directement les caractéristiques de l’image.

4 900 radiographies

Des radiologues du service d’imagerie de l’hôpital universitaire national de Séoul ont développé leurs modèles à l'aide de 4 924 radiographies de la hanche réalisées chez 4 308 patients (3 632 femmes ; âge moyen 62 ans) entre septembre 2009 et avril 2020. Le T-score mesuré par ostéodensitométrie a été utilisé comme norme de référence pour l'ostéoporose.

Sept modèles mis au point

« Sept modèles de deep radiomics ont été développés en combinant différents types de caractéristiques : cliniques (Modèle-C), texture (Modèle-T), deep features (Modèle-D), texture et cliniques (Modèle-TC), deep features et cliniques (Modèle-DC), deep featu

Il vous reste 63% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Carla Ferrand

Journaliste cheffe de rubrique

Voir la fiche de l’auteur

Bibliographie

  1. Kim S., Kim B. R., Chae H.-D. Et coll., « Deep-radiomic-based-approach to the diagnosis of osteoporosis using hip radiographs », Radiology : Artificial Intelligence. Epub 25 mai 2022. DOI : 10.1148/ryai.210212.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

11 Fév

16:09

Median Technologies a obtenu l’autorisation 510(k) de la FDA pour son dispositif médical eyonis® LCS.  Basé sur l’IA. Celui-ci vise à transformer le dépistage du cancer du poumon en aidant à son diagnostic à des stages précoces et curables et ce, en limitant les examens de suivi inutiles et les faux positifs.

13:30

Un rapport conjoint publié en janvier 2026, de la joint commission, organisme de certification aux Etats-Unis et du National Quality Forum (NQF), mentionne le « Préjudice au patient associé à une lésion thermique liée à l'IRM », comme un domaine d’inquiétude important. Les deux organismes américains ont aligné leurs listes des événements Sentinel et « événements graves à signaler », afin de simplifier le signalement des événements de sécurité des patients. (Source)

7:16

L’obésité réduit la performance de la radiographie thoracique pour le diagnostic de pneumonie, avec une concordance et une sensibilité nettement inférieures à celles observées chez les patients non obèses. Dans ce contexte, le scanner thoracique démontre une précision diagnostique supérieure pour la pneumonie, chez les patients obèses. (Étude)
10 Fév

16:00

L'arrêté du 4 février 2026 fixe le contenu et les modalités des appels à candidature pour l'expérimentation du retraitement de certains dispositifs médicaux à usage unique, notamment certains types de cathéters.

14:11

Les modèles de comptes rendus structurés IRM spécifiques à l'endométriose amélioreraient considérablement l'exhaustivité de la documentation par rapport aux modèles généraux et au texte libre (étude).
Docteur Imago

GRATUIT
VOIR