Apprentissage profond

Un système d’IA jugé performant pour le diagnostic de l’ostéoporose

Des radiologues coréens ont développé des modèles de « deep radiomics » pour le diagnostic automatique de l'ostéoporose à partir de radiographies de la hanche. Leur approche pourrait permettre d’adapter la prise en charge des patients avant que les fractures ne se produisent.

icon réservé aux abonnésArticle réservé aux abonnés
Le 09/06/22 à 15:00, mise à jour aujourd'hui à 15:14 Lecture 2 min.

Les auteurs concluent que les modèles développés pouvaient diagnostiquer l'ostéoporose avec une haute performance. Selon eux, ils pourraient servir d'outils de triage pour orienter les patients présentant une forte suspicion d'ostéoporose vers un examen d’ostéodensitométrie. © S.Kim et coll./RSNA 2022

En Corée du sud, des chercheurs ont mis au point un système de « deep radiomics » pour diagnostiquer l’ostéoporose de façon automatique. Leurs résultats sont parus le 25 mai dans Radiology : Artificial Intelligence [1]. La radiomique profonde utilise des réseaux de neurones convolutifs pour extraire directement les caractéristiques de l’image.

4 900 radiographies

Des radiologues du service d’imagerie de l’hôpital universitaire national de Séoul ont développé leurs modèles à l'aide de 4 924 radiographies de la hanche réalisées chez 4 308 patients (3 632 femmes ; âge moyen 62 ans) entre septembre 2009 et avril 2020. Le T-score mesuré par ostéodensitométrie a été utilisé comme norme de référence pour l'ostéoporose.

Sept modèles mis au point

« Sept modèles de deep radiomics ont été développés en combinant différents types de caractéristiques : cliniques (Modèle-C), texture (Modèle-T), deep features (Modèle-D), texture et cliniques (Modèle-TC), deep features et cliniques (Modèle-DC), deep featu

Il vous reste 63% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Carla Ferrand

Journaliste cheffe de rubrique

Voir la fiche de l’auteur

Bibliographie

  1. Kim S., Kim B. R., Chae H.-D. Et coll., « Deep-radiomic-based-approach to the diagnosis of osteoporosis using hip radiographs », Radiology : Artificial Intelligence. Epub 25 mai 2022. DOI : 10.1148/ryai.210212.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

15 Juil

16:00

Un « potentiel prometteur » des modèles de langages dans les classifications radiologiques. Selon une étude parue le 7 juillet, ces modèles ont montré une justesse dans la classification générale des fractures, mais des limites de classifications détaillées confirme le besoin de validation par les professionnels de santé avant une véritable utilisation.

13:54

PANCANAI, un modèle d’intelligence artificielle, montre une haute sensibilité dans la détection du cancer du pancréas sur les scanners, dans une large étude rétrospective de cohorte, publiée dans la revue Investigate Radiology.

7:30

En Australie et Nouvelle Zélande, les radiologues en imagerie oncologique préfèrent utiliser des rapports structurés sans terminologies pré-écrite. Selon une étude publiée dans JMIRO, l’utilisation des rapports plus structuré est plus importante dans les pays ou la pratique de l'imagerie oncologique est plus importante et le personnel mieux formé.
11 Juil

17:17

D'après un nouvelle étude menée par une équipe germano-américaine et publié par European Journal of Radiology, la réussite de la mise en place de l'IA nécessite une organisation solide et une équipe de surveillance aguerri pour superviser l'évolution, le déploiement et la maintenance continue des algorithmes.

16:13

Selon une étude publiée dans Academic Radiology, des QCM générés par ChatGPT comme outil de renforcement des connaissances ont obtenu des taux de réussite très proche de ceux de radiologues expérimentés. Malgré une qualité jugée assez proche, une partie des étudiants ont reconnu les QCM écrits par des radiologues.
Docteur Imago

GRATUIT
VOIR