Apprentissage profond

Une IA de Google trie les radios thoraciques pour améliorer le flux de travail

Des chercheurs de Google Health ont entraîné et testé un système d’apprentissage profond capable de trier les examens de radiographie thoracique qui présentent des anomalies. Évalué dans le cadre d’une simulation de flux de travail, il a permis de réduire de 7 à 28 % le temps de prise en charge des cas anormaux.

icon réservé aux abonnésArticle réservé aux abonnés
Le 29/09/21 à 16:00, mise à jour aujourd'hui à 14:10 Lecture 3 min.

Le système de deep learning a été entraîné et réglé à l’aide d’une base de données de 248 445 patients d’un réseau de 5 groupes d’hôpitaux en Inde. © Nabulsi Z. et coll.

Les systèmes d’intelligence artificielle conçus pour analyser les radiographies thoraciques sont déjà nombreux. Pour la plupart, ils se concentrent sur la détection d’anomalies ou de pathologies spécifiques : pneumonies, épanchements pleuraux, etc. Pour Zaid Nabulsi et ses confrères de Google Health, la branche santé du géant de l’informatique, cette approche a le défaut de limiter leur utilité pour un centre ou un service de radiologie qui voudrait une assistance pour « prioriser » les patients et améliorer son flux de travail. Un algorithme conçu pour détecter une pathologie peut en effet passer à côté d’une autre et il est irréaliste d’imaginer agréger des systèmes multiples qui détecteraient chacun une ou plusieurs pathologies séparées, écrivent-ils dans la revue Scientific Reports [1].

Différencier les radios « normales » et « anormales »

Les chercheurs de la firme californienne ont donc opté pour une autre démarche, et développé un algorithme d’apprentissage profond capable de diff

Il vous reste 76% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Jérome Hoff

Rédacteur en chef adjoint BOM Presse Clichy

Voir la fiche de l’auteur

Bibliographie

  1. Nabulsi Z., Sellergren A., Jamshy S. et coll., « Deep learning for distinguishing normal versus abnormal chest radiographs and generalization to two unseen diseases tuberculosis and COVID-19 », Scientific Reports, septembre 2021, vol. 11, n° 15553. DOI : https://doi.org/10.1038/s41598-021-93967-2.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

09 Jan

16:11

Une étude publiée dans BMC Urology a évalué la capacité de plusieurs grands modèles de langage à classer des comptes rendus d’IRM de la prostate selon le système PI-RADS v2.1. Le modèle GPT-o1 montre la meilleure concordance avec les radiologues, mais tous les modèles présentent des limites pour les lésions PI-RADS 3.

13:08

Chez les patients atteints d'occlusion aiguë des grands vaisseaux (LVO) de l’ACM et de sténose de l’artère intracrânienne sous-jacente traitée par stent de secours, l’administration préalable d’une thrombolyse intraveineuse n’est pas associée à une augmentation du risque d’hémorragie intracrânienne symptomatique ni de la mortalité à 90 jours (étude).

7:30

Un modèle de classification ternaire radiologique a obtenu des performances diagnostiques « excellentes » pour différencier les lésions pulmonaires sur des images de scanner, selon des résultats publiés dans Radiology.
08 Jan

15:17

Des chercheurs ont introduit un nouveau marqueur tumoral IRM appelé « signe sombre-clair-obscur » et suggèrent qu’il peut aider à prédire la métastase des ganglions lymphatiques chez les patients atteints d’un cancer rectal, selon une étude publiée dans Radiology.
Docteur Imago

GRATUIT
VOIR