Apprentissage profond

Une IA de Google trie les radios thoraciques pour améliorer le flux de travail

Des chercheurs de Google Health ont entraîné et testé un système d’apprentissage profond capable de trier les examens de radiographie thoracique qui présentent des anomalies. Évalué dans le cadre d’une simulation de flux de travail, il a permis de réduire de 7 à 28 % le temps de prise en charge des cas anormaux.

icon réservé aux abonnésArticle réservé aux abonnés
Le 29/09/21 à 16:00, mise à jour hier à 14:10 Lecture 3 min.

Le système de deep learning a été entraîné et réglé à l’aide d’une base de données de 248 445 patients d’un réseau de 5 groupes d’hôpitaux en Inde. © Nabulsi Z. et coll.

Les systèmes d’intelligence artificielle conçus pour analyser les radiographies thoraciques sont déjà nombreux. Pour la plupart, ils se concentrent sur la détection d’anomalies ou de pathologies spécifiques : pneumonies, épanchements pleuraux, etc. Pour Zaid Nabulsi et ses confrères de Google Health, la branche santé du géant de l’informatique, cette approche a le défaut de limiter leur utilité pour un centre ou un service de radiologie qui voudrait une assistance pour « prioriser » les patients et améliorer son flux de travail. Un algorithme conçu pour détecter une pathologie peut en effet passer à côté d’une autre et il est irréaliste d’imaginer agréger des systèmes multiples qui détecteraient chacun une ou plusieurs pathologies séparées, écrivent-ils dans la revue Scientific Reports [1].

Différencier les radios « normales » et « anormales »

Les chercheurs de la firme californienne ont donc opté pour une autre démarche, et développé un algorithme d’apprentissage profond capable de diff

Il vous reste 76% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Jérome Hoff

Rédacteur en chef adjoint BOM Presse Clichy

Voir la fiche de l’auteur

Bibliographie

  1. Nabulsi Z., Sellergren A., Jamshy S. et coll., « Deep learning for distinguishing normal versus abnormal chest radiographs and generalization to two unseen diseases tuberculosis and COVID-19 », Scientific Reports, septembre 2021, vol. 11, n° 15553. DOI : https://doi.org/10.1038/s41598-021-93967-2.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

02 Jan

16:16

Le ministère de la Santé et l'Institut national du cancer (INCA) ont annoncé ce lundi 29 décembre 2025 la création d'un registre national des cancers. Ce dernier aura pour objectif de recueillir les données concernant l’ensemble des cas de cancers sur le territoire afin « d’améliorer la connaissance de la maladie, le suivi des trajectoires des patients et l’évaluation des actions de prévention, de dépistage, de prise en charge et de suivi après-cancer ».

13:24

L'imagerie de dispersion des ondes de cisaillement améliore les performances diagnostiques pour des lésions mammaires de taille, de profondeur et d'épaisseur variables, palliant ainsi les limitations de l'élastographie par ondes de cisaillement. Elle est particulièrement efficace pour les petites lésions (≤ 20 mm) et les masses BI-RADS 4B (étude).
31 Déc

15:55

Le signe de l'artère cérébrale moyenne hyperdense au scanner non injecté est associé à un résultat favorable à long terme chez les patients atteints d'un AVC bénéficiant d'une thrombectomie (étude).

13:51

Un nouveau cabinet d’imagerie médicale ouvrira à Saint-Avold (57) début janvier. Il remplacera le cabinet liquidé en mars dernier, informe Le Républicain Lorrain. 

7:50

Des formulaires de consentement éclairé générés par ChatGPT ont démontré une meilleure compréhension des patients par rapport aux documents standard pour les procédures de radiologie interventionnelle (étude).
Docteur Imago

GRATUIT
VOIR