Apprentissage profond

Une IA de Google trie les radios thoraciques pour améliorer le flux de travail

Des chercheurs de Google Health ont entraîné et testé un système d’apprentissage profond capable de trier les examens de radiographie thoracique qui présentent des anomalies. Évalué dans le cadre d’une simulation de flux de travail, il a permis de réduire de 7 à 28 % le temps de prise en charge des cas anormaux.

icon réservé aux abonnésArticle réservé aux abonnés
Le 29/09/21 à 16:00, mise à jour aujourd'hui à 15:10 Lecture 3 min.

Le système de deep learning a été entraîné et réglé à l’aide d’une base de données de 248 445 patients d’un réseau de 5 groupes d’hôpitaux en Inde. © Nabulsi Z. et coll.

Les systèmes d’intelligence artificielle conçus pour analyser les radiographies thoraciques sont déjà nombreux. Pour la plupart, ils se concentrent sur la détection d’anomalies ou de pathologies spécifiques : pneumonies, épanchements pleuraux, etc. Pour Zaid Nabulsi et ses confrères de Google Health, la branche santé du géant de l’informatique, cette approche a le défaut de limiter leur utilité pour un centre ou un service de radiologie qui voudrait une assistance pour « prioriser » les patients et améliorer son flux de travail. Un algorithme conçu pour détecter une pathologie peut en effet passer à côté d’une autre et il est irréaliste d’imaginer agréger des systèmes multiples qui détecteraient chacun une ou plusieurs pathologies séparées, écrivent-ils dans la revue Scientific Reports [1].

Différencier les radios « normales » et « anormales »

Les chercheurs de la firme californienne ont donc opté pour une autre démarche, et développé un algorithme d’apprentissage profond capable de diff

Il vous reste 76% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Jérome Hoff

Rédacteur en chef adjoint BOM Presse Clichy

Voir la fiche de l’auteur

Bibliographie

  1. Nabulsi Z., Sellergren A., Jamshy S. et coll., « Deep learning for distinguishing normal versus abnormal chest radiographs and generalization to two unseen diseases tuberculosis and COVID-19 », Scientific Reports, septembre 2021, vol. 11, n° 15553. DOI : https://doi.org/10.1038/s41598-021-93967-2.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

20 Oct

16:02

Une méta-analyse de 13 articles constate l'absence de preuves ou des preuves contradictoires de l'intérêt d'utiliser des agents antispasmodiques pour améliorer la qualité d'image de l'IRM pelvienne.

13:07

Un Mammobile va sillonner la région Provence-Alpes-Côte d’Azur début 2026, afin de renforcer le dépistage du cancer du sein, informe le média ledauphine.com.

7:14

Des chercheurs de l'école de médecine Keck de l’université de Californie du Sud ont créé la première méthode pour mesurer de manière non invasive les pouls microscopiques des vaisseaux sanguins dans le cerveau humain. À l’aide de l’IRM 7T avancée, ils ont constaté que ces minuscules pulsations se renforçaient avec l’âge et le risque vasculaire, perturbant les systèmes d’élimination des déchets du cerveau. (Étude)
17 Oct

15:09

L’IRM mammaire multiparamétrique aide à évaluer les calcifications mammographiques BI-RADS de catégorie 4a/4b sans biopsie. Les caractéristiques DWI ou IRM quantitative peuvent ne pas améliorer davantage les performances diagnostiques, suggère une étude publiée dans European journal of radiology.
Docteur Imago

GRATUIT
VOIR