Recherche

Une IA française combine les données cliniques, biologiques et radiologiques pour prédire la sévérité du COVID-19

Selon une étude pilotée depuis le centre Gustave-Roussy, un algorithme exploitant les examens de scanner et les données cliniques et biologiques permet d’anticiper l’évolution de la maladie chez les patients atteints du COVID et de mieux orienter leur prise en charge.

icon réservé aux abonnésArticle réservé aux abonnés
Le 24/06/20 à 16:00, mise à jour hier à 14:16 Lecture 5 min.

Cet outil, estime Nathalie Lassau, pourrait être utile pour orienter les patients si une deuxième vague épidémique survient (photo d'illustration). © Carla Ferrand

Au plus fort de l’épidémie, le COVID-19 a fait peser une pression inédite sur les équipes soignantes, notamment celles des urgences, qui décidaient d’hospitaliser les patients ou de les renvoyer chez eux. Cette situation a souligné la nécessité d’identifier des marqueurs prédictifs de la sévérité de la maladie. Outre l’âge et les comorbidités, reconnus comme des facteurs de risques, le scanner thoracique s’est affirmé comme une potentielle source d’information, l’extension de l’atteinte pulmonaire étant corrélée à la sévérité de la maladie. Plusieurs équipes de chercheurs et développeurs ont exploité cette caractéristique, et développé des outils basés sur l’intelligence artificielle capables de prédire l’évolution de la maladie.

Une étude lancée à Gustave-Roussy

Nathalie Lassau, radiologue au centre de lutte contre le cancer Gustave-Roussy, à Villejuif (94) et chercheuse à l’Inserm, a voulu aller plus loin et évaluer les capacités pronostiques d’un algorithme qui analyserait non seuleme

Il vous reste 85% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Jérome Hoff

Rédacteur en chef adjoint BOM Presse Clichy

Voir la fiche de l’auteur

Bibliographie

  1. Lassau N., Ammary S., Chouzenoux E. et coll., « AI-based multi-modal integration of clinical characteristics, lab tests and chest CTs improves COVID-19 outcome prediction of hospitalized patients », medRxiv, 19 mai 2020. Article en prépublication.

Discussion

Aucun commentaire

Laisser un commentaire

Le fil Docteur Imago

09 Fév

16:06

Chez les participantes de l'essai canadien Tomosynthesis Mammographic Imaging Screening Trial âgées de 40 à 44 ans et de plus de 75 ans, le dépistage du cancer du sein par tomosynthèse a donné des performances plus favorables que le dépistage par mammographie. Étude.

14:02

Planmed annonce le marquage CE et la commercialisation de XFI®, son scanner cone-beam (CBCT) pour l'imagerie corps entier en charge. La certification concerne l'imagerie des extrémités, de la tête et du cou, précise un communiqué.

7:30

Un essai randomisé contrôlé sur 60 patientes atteintes d'adénomyose démontre que l'embolisation des artères utérines résulte en une résolution plus complète de la douleur pelvienne chronique et des saignements que le traitement par diénogest. Étude.
06 Fév

16:08

Des chercheurs ont développé et validé un modèle de deep learning entièrement automatisé pour détecter et mesurer les masses surrénaliennes sur des scanners abdominaux injectés. Le modèle a le potentiel d’améliorer les taux de détection des lésions et de faciliter leur prise en charge précoce, indique l'étude.
Docteur Imago

GRATUIT
VOIR