Optimisation du dépistage

Une nouvelle IA prédit le cancer du poumon jusqu’à 6 ans à partir d’un scanner thoracique

Un nouvel algorithme utilisant l'apprentissage profond prédit le risque de développer un cancer bronchopulmonaire dans les six ans suivant la réalisation d'un scanner thoracique. Il a fait l'objet d'une publication dans Journal of Clinical Oncology en janvier 2023.

icon réservé aux abonnésArticle réservé aux abonnés
Le 13/02/23 à 16:00, mise à jour le 11/09/23 à 13:23 Lecture 2 min.

L'IA Sybil, validée sur trois cohortes indépendantes de patients, prédit le risque individuel de cancer du poumon à partir d'un scanner thoracique, avec une aire sous la courbe supérieure à 0,75 sur 6 ans (image d'illustration). D. R.

Un unique scanner thoracique basse dose, sans données cliniques associées ni annotations. C'est tout ce que nécessite Sybil, un nouveau modèle d'apprentissage profond, pour prédire le risque de développer un cancer du poumon chez différentes cohortes de sujets ayant participé à un dépistage du cancer bronchopulmonaire, d'après une étude rétrospective présentée en janvier 2023 dans Journal of Clinical Oncology [1].

Trois bases de données

Les chercheurs du Massachusetts Institute of Technology de Cambridge (États-Unis) et du Massachusetts General Hospital (MGH) de Boston (États-Unis) à l'origine de l'article ont entraîné puis validé Sybil sur des milliers de scanners thoraciques basse dose provenant de trois bases de données différentes : le dépistage au MGH (8 821 scanners basse dose dans la base de données de validation), le dépistage organisé national américain (6 282 examens), et le dépistage au Chang Gung Memorial Hospital (CGMH) à Taïwan (12 280 examens). Grâce à la sélection de suje

Il vous reste 71% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Bibliographie

  1. Mikhael P. G., Wohlwend J., Yala A. et coll., « Sybil: A Validated Deep Learning Model to Predict Future Lung Cancer Risk From a Single Low-Dose Chest Computed Tomography », Journal of Clinical Oncology, 12 janvier 2023. DOI : 10.1200/JCO.22.01345.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

30 Déc

12:30

L'obésité de classe 1 (IMC = 30-34,9) n'a pas été associée à des complications supplémentaires lors de l'insertion percutanée par un radiologue interventionnel d'un cathéter péritonéal de dialyse, dans une étude rassemblant 125 patients.

7:30

La présence de signal élevé généralisé, bilatéral et symétrique dans la substance blanche observée en IRM sur une séquence dSIR, est un marqueur potentiel pour la reconnaissance de changements secondaires dans le cerveau des patients qui présentent des symptômes persistants après un traumatisme cérébral. Étude.
29 Déc

16:41

Sonoscanner, fabricant français d’échographes, annonce avoir livré 150 échographes ultraportables à des centres médicaux ukrainiens. Une opération dans le cadre du Fonds de soutien aux infrastructures critiques et aux secteurs prioritaires de l’économie ukrainienne porté par la Direction générale du Trésor français.

12:39

Après avoir partagé trois dîners sur une période de 6 mois, les radiologues participant à une étude présentée dans Academic Radiology ont vu leur score de burn-out diminuer et leur satisfaction professionnelle s'améliorer à long terme.

7:36

Docteur Imago

GRATUIT
VOIR