Optimisation du dépistage

Une nouvelle IA prédit le cancer du poumon jusqu’à 6 ans à partir d’un scanner thoracique

Un nouvel algorithme utilisant l'apprentissage profond prédit le risque de développer un cancer bronchopulmonaire dans les six ans suivant la réalisation d'un scanner thoracique. Il a fait l'objet d'une publication dans Journal of Clinical Oncology en janvier 2023.

icon réservé aux abonnésArticle réservé aux abonnés
Le 13/02/23 à 16:00, mise à jour le 11/09/23 à 13:23 Lecture 2 min.

L'IA Sybil, validée sur trois cohortes indépendantes de patients, prédit le risque individuel de cancer du poumon à partir d'un scanner thoracique, avec une aire sous la courbe supérieure à 0,75 sur 6 ans (image d'illustration). D. R.

Un unique scanner thoracique basse dose, sans données cliniques associées ni annotations. C'est tout ce que nécessite Sybil, un nouveau modèle d'apprentissage profond, pour prédire le risque de développer un cancer du poumon chez différentes cohortes de sujets ayant participé à un dépistage du cancer bronchopulmonaire, d'après une étude rétrospective présentée en janvier 2023 dans Journal of Clinical Oncology [1].

Trois bases de données

Les chercheurs du Massachusetts Institute of Technology de Cambridge (États-Unis) et du Massachusetts General Hospital (MGH) de Boston (États-Unis) à l'origine de l'article ont entraîné puis validé Sybil sur des milliers de scanners thoraciques basse dose provenant de trois bases de données différentes : le dépistage au MGH (8 821 scanners basse dose dans la base de données de validation), le dépistage organisé national américain (6 282 examens), et le dépistage au Chang Gung Memorial Hospital (CGMH) à Taïwan (12 280 examens). Grâce à la sélection de suje

Il vous reste 71% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Bibliographie

  1. Mikhael P. G., Wohlwend J., Yala A. et coll., « Sybil: A Validated Deep Learning Model to Predict Future Lung Cancer Risk From a Single Low-Dose Chest Computed Tomography », Journal of Clinical Oncology, 12 janvier 2023. DOI : 10.1200/JCO.22.01345.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

16 Jan

15:29

Un tissu mammaire dense réduit la performance de la tomosynthèse mammaire numérique, selon une étude publiée dans Academic Radiology. « Ces résultats soulignent la nécessité de rapporter et de prendre en compte la densité mammaire dans les recommandations de dépistage. »

13:27

Vidi Capital finalise son rapprochement avec le groupe IMAC à Cholet, qui rejoint le réseau. Cette opération porte à 110 le nombre de médecins en exercice, répartis au sein de sept entités et IMAC devient ainsi le deuxième groupe des Pays-de-la-Loire à s’adosser à Vidi Capital, après Vidi – Rad’Yon, annonce un communiqué de presse.

7:13

Bayer a annoncé la conclusion d’accords définitifs pour l’acquisition auprès d’Attralus de deux agents d’imagerie moléculaire expérimentaux, AT-01 et AT-05, destinés au diagnostic de l’amyloïdose cardiaque. Cette opération stratégique renforce la position de Bayer dans l’imagerie moléculaire et s’inscrit dans le développement de sa stratégie de cardiologie de précision, annonce un communiqué.
15 Jan

15:14

Les élections de l’European Society of Radiology (ESR) se tiendront du 8 au 21 janvier 2026. Deux candidates soutenues par la SFR, les professeurs Isabelle Thomassin-Naggara et Corinne Balleyguier, présentent leur candidature. Les radiologues français membres de l’ESR sont appelé à se mobiliser en votant par courriel : voting@polyas.com.

13:13

Bien que les unités mobiles de mammographie puissent améliorer l’accès aux soins pour des populations médicalement défavorisées, une étude pilote publiée dans Academic Radiology, met en lumière des opportunités pour promouvoir un suivi rapide et équitable des mammographies de dépistage anormales grâce à une meilleure navigation des patients, un soutien social et une aide financière.
Docteur Imago

GRATUIT
VOIR