Apprentissage profond

Une IA améliore la détection des fractures par radiographie

D’après les résultats d’une étude parue dans Radiology, un système d’apprentissage profond développé par le français Gleamer a permis d’améliorer de près de 9 % la sensibilité des médecins radiologues et urgentistes pour la détection sur des radiographies de fractures sur tout le squelette appendiculaire.

icon réservé aux abonnésArticle réservé aux abonnés
Le 16/06/21 à 16:00, mise à jour aujourd'hui à 14:12 Lecture 2 min.

Le logiciel met en avant les régions d’intérêt en les entourant d’une boîte et fournit un « score de confiance » concernant la présence d’une fracture dans ces zones. © Duron L. et coll.

L’entreprise française Gleamer a annoncé en mai la parution dans Radiology des résultats d’une étude clinique « de grande envergure » sur l’efficacité de sa solution d’intelligence artificielle BoneView® [1].  Ce logiciel, basé sur l’apprentissage profond « détecte les lésions en radiographie traumatique et les présente au radiologue pour validation finale », indique la société dans un communiqué de presse.

Un test clinique sur 600 patients

Financée et conçue par Gleamer, l’étude a comparé les performances de 6 médecins urgentistes et 6 radiologues avec et sans l’aide de BoneView® sur un échantillon rétrospectif d’examens réalisés sur 600 patients issus de 17 centres français, obtenus après un traumatisme récent, dont certains montraient une ou plusieurs fractures de l’épaule, du bras, de la main, du bassin, de la jambe ou du pied. Le logiciel avait été préalablement entraîné à l’aide de 60 170 radiographies de patients traumatiques.

La première étude du genre

« À notre connaissance, il s’

Il vous reste 71% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Jérome Hoff

Rédacteur en chef adjoint BOM Presse Clichy

Voir la fiche de l’auteur

Bibliographie

  1. Duron L., Ducarouge A., Gillibert A. et coll., « Assessment of an AI aid in detection of adult appendicular skeletal fractures by emergency physicians and radiologists: A multicenter cross-sectional diagnostic study », Radiology, 2021. Epub 4 mai 2021. DOI : 10.1148/radiol.2021203886.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

24 Nov

16:41

L'entreprise française Avicenna.AI annonce le lancement d'AVI, une nouvelle plateforme d'intelligence artificielle qui « s'intègre directement dans les PCS et RIS sans nécessiter de visionneuse, de listes de travail supplémentaires ou de changement des flux cliniques », explique un communiqué de presse. Elle est compatible avec tout le portfolio CINA d'Avicenna.

13:40

Les grands modèles de langage peuvent être utilisés pour automatiser l'extraction d'étiquettes de « vérité terrain » à partir des comptes rendus d'examens de scanner à comptage photonique, facilitant ainsi la validation locale d'outils d'intelligence artificielle, conclut une étude présentée dans JACR.

7:36

La reconstruction par apprentissage profond est associée à une performance non inférieure à supérieure comparée aux autres techniques de reconstruction en scanner thoracique, conclut une méta-analyse.
21 Nov

15:34

Des chercheurs ont examiné l’association entre la charge allostatique (AL), un indicateur de dysrégulation physiologique liée au stress, et la présence de pathologie maligne lors de biopsies mammaires guidées par imagerie. Les résultats suggèrent qu’une AL plus élevée est liée à un risque accru de pathologie maligne, ce qui pourrait guider des stratégies de dépistage personnalisées, indique une étude publiée dans JACR.
Docteur Imago

GRATUIT
VOIR