Nouvelle modalité

L’IRM corps entier en pédiatrie

icon réservé aux abonnésArticle réservé aux abonnés
Solène Le Cam, Valérie Merzoug, Catherine Adamsbaum et Inès Mannes Le 18/06/20 à 15:00, mise à jour le 11/09/23 à 13:29 Lecture 11 min.

Son caractère non irradiant et sa couverture large en un seul examen justifient la place grandissante de l'IRM corps entier en imagerie pédiatrique. Une bonne connaissance des variantes de la normale et des artefacts est nécessaire pour aboutir à un diagnostic. © Inès Mannes et coll.

Résumé

L’IRM corps entier est une modalité d’imagerie de choix en radiologie pédiatrique et il existe un nombre croissant de demandes de cet examen. Sa non-exposition aux rayonnements ionisants et sa couverture large en un seul examen justifient sa place grandissante. Une bonne connaissance des variantes de la normale et des artefacts est nécessaire pour aboutir à un diagnostic. Le protocole doit être adapté à la pathologie recherchée. L’IRM corps entier est notamment largement indiquée en rhumatologie, face à des douleurs chroniques de l’enfant ou une fièvre prolongée, susceptibles de révéler une ostéomyélite chronique multifocale récurrente (OCMR).

Introduction

L’IRM corps entier est un examen particulièrement attractif en imagerie pédiatrique. Elle fournit une vision d’ensemble du corps humain en un seul examen, permettant de ne pas multiplier les explorations. Elle n’expose pas aux rayonnements ionisants et répond donc aux principes fondamentaux de la radioprotection. Le principe ALARA, « As Low As Reasonably Achievable », est ainsi respecté. L’IRM corps entier constitue donc une alternative intéressante aux autres modalités d’imagerie corps entier utilisées jusqu’à présent, telles que la scintigraphie ou la TEP-TDM. Afin d’en tirer profit, il est essentiel de comprendre comment et pourquoi cet examen doit être réalisé, et quels en sont les artefacts et variantes de la normale.

Technique et réalisation pratique

Une IRM corps entier peut être réalisée à 1,5 T ou 3 T. En pratique, l’acquisition se fait en respiration libre, sans sédation au-delà de l’âge de 4 ans. L’examen dure 30 à 60 minutes, selon le nombre de paliers d’acquisiti

Il vous reste 93% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

OFFRE DÉCOUVERTE

11€

pendant 1 mois
puis 23 €/mois

S’abonner à Docteur Imago

Auteurs

Solène Le Cam

Radiologue Paris

Valérie Merzoug

Radiologue Service d'imagerie pédiatrique Hôpital Bicêtre - Assistance publique - Hôpitaux de Paris

Catherine Adamsbaum

Professeur émérite Radiologie pédiatrique Hôpital Robert Debré, Assistance publique-Hôpitaux de Paris Faculté de médecine de l’université Paris Saclay

Inès Mannes

Radiologue Service d'imagerie pédiatrique Hôpital Bicêtre - Assistance publique - Hôpitaux de Paris

Bibliographie

  1. Laor T., Jaramillo D., « MR Imaging Insights into Skeletal Maturation: What Is Normal ? », Radiology, janvier 2009, vol. 250, n° 1, p. 28–38. DOI : 10.1148/radiol.2501071322. Article en libre accès.
  2. Raissaki M., Demetriou S., Spanakis K. et coll., « Multifocal Bone and Bone Marrow Lesions in Children — MRI findings », Pediatric Radiology, mars 2017, vol. 47, n° 3, p. 342–360. DOI : 10.1007/s00247-016-3737-1.
  3. Greer M.-L. C., « Whole-body Magnetic Resonance Imaging: Techniques and Non-Oncologic Indications », Pediatric Radiology, août 2018, vol. 48, n° 9, p. 1348–1363. DOI : 10.1007/s00247-018-4141-9.
  4. Falip C., Alison M., Boutry N. et coll., « Chronic Recurrent Multifocal Osteomyelitis (CRMO): A Longitudinal Case Series Review », Pediatric Radiology, mars 2013, vol. 43, n° 3, p. 355–375. DOI : 10.1007/s00247-012-2544-6.
  5. Fritz J., Tzaribatchev N., Claussen C. D. et coll., « Chronic Recurrent Multifocal Osteomyelitis: Comparison of Whole-Body MR Imaging with Radiography and Correlation with Clinical and Laboratory Data », Radiology, septembre 2009, vol. 252, n° 3, p. 842–851. DOI : 10.1148/radiol.2523081335. Article en libre accès.
  6. Voit A. M., Arnoldi A. P., Douis H. et coll., « Whole-body Magnetic Resonance Imaging in Chronic Recurrent Multifocal Osteomyelitis: Clinical Longterm Assessment May Underestimate Activity », The Journal of Rheumatology, août 2015, vol. 42, n° 8, p. 1455–1462. DOI : 10.3899/jrheum.141026.
  7. Eutsler E. P., Khanna G., « Whole-body magnetic resonance imaging in children: technique and clinical applications », Pediatric Radiology, 26 mai 2016, vol. 46, p. 858–872. DOI : 10.1007/s00247-016-3586-y.
  8. Huang Z.-G., Gao B. X., Chen H. et coll., « An efficacy analysis of whole-body magnetic resonance imaging in the diagnosis and follow-up of polymyositis and dermatomyositis », PloS One, 17 juin 2017, vol. 12, n° 17, e0181069. DOI : 10.1371/journal.pone.0181069.
  9. Lecouvet F. E., « Whole-Body MR Imaging: Musculoskeletal Applications », Radiology, mai 2016, vol. 279, n° 2, p. 345–365. DOI : 10.1148/radiol.2016142084. Article en libre accès.
  10. Kim J. R., Yoon H. M., Jung A. Y. et coll., « Comparison of whole-body MRI, bone scan, and radiographic skeletal survey for lesion detection and risk stratification of Langerhans Cell Histiocytosis », Scientific Reports, 2019, vol. 9, n° 317. DOI : 10.1038/s41598-018-36501-1. Article en libre accès.
  11. Goo H. W., Yang D. H., Ra Y. S., et coll., « Whole-body MRI of Langerhans cell histiocytosis: comparison with radiography and bone scintigraphy », Pediatric Radiology, octobre 2006, vol. 36, p. 1019–1031. DOI : 10.1007/s00247-006-0246-7.
  12. Perez-Rossello J. M., Connolly S. A., Newton A. W., et coll., « Whole-body MRI in Suspected Infant Abuse », AJR American Journal of Roentgenology, septembre 2010, vol. 195, n° 3, p. 744–750. DOI : 10.2214/AJR.09.3364.
  13. Davis, J. T., Kwatra, N., Schooler, G. R., « Pediatric whole-body MRI: A review of current imaging techniques and clinical applications », Journal of Magnetic Resonance Imaging, 4 avril 2016, vol. 44, n° 4, p. 783–793. DOI : 10.1002/jmri.25259.
  14. Gottumukkala, R. V., Gee, M. S., Hampilos, P. J. et coll., « Current and Emerging Roles of Whole-Body MRI in Evaluation of Pediatric Cancer Patients », RadioGraphics, 2019, vol. 39, n° 2, p. 516-534. DOI : 10.1148/rg.2019180130.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

17 Mai

16:00

Le constructeur GE HealthCare a dévoilé sa nouvelle IRM 3 T dédiée à l'imagerie cérébrale, spécialement conçue pour « faire avancer la recherche en IRM dans les procédures complexes en neurologie, oncologie et psychiatrie ». L’équipement est en attente de l'autorisation de la FDA et n’a pas encore le marquage CE, annonce GE HealthCare dans un communiqué.

13:30

Le scanner thoracique à très faible dose offre une grande précision dans la détection des anomalies pulmonaires post-COVID par rapport à un scanner à dose standard à moins d’un dixième de la dose de rayonnement. Il constitue donc une alternative pour le suivi des patients post-COVID, conclut une étude parue dans European Radiology.

7:30

Une étude publiée dans The Lancet Regional Health Western Pacific a identifié des anomalies cérébrales sur les IRM de personnes ayant eu des cas modérés à graves de Covid-19. Ces patients continuent de souffrir de troubles cognitifs, de symptômes psychiatriques et neurologiques et d’altérations fonctionnelles cérébrales, même après 2 ans d’infection, suggèrent les chercheurs.
16 Mai

16:01

L'IRM a une meilleure sensibilité et une spécificité égale à l'échographie transvaginale dans le diagnostic de l'endométriose profonde touchant la cloison recto-vaginale, selon une méta-analyse de huit articles portant sur 721 patientes (lien vers l'étude).
Docteur Imago

GRATUIT
VOIR