RSNA 2023

Quelles stratégies pour réduire les erreurs en radiologie ?

Au congrès annuel de la Société nord-américaine de radiologie (RSNA 2023), une session a proposé des stratégies pour comprendre et réduire les causes d'erreurs humaines en imagerie. Selon les orateurs, l'optimisation de l'environnement et du temps de travail peut modérer les effets des biais cognitifs alors qu'une IA mal réglée peut au contraire les accentuer.

icon réservé aux abonnésArticle réservé aux abonnés
Le 11/01/24 à 15:00 Lecture 3 min.

Une étude montre qu'après une nuit de garde, les radiologues affichent une performance diagnostique plus faible, une augmentation de 45 % du temps de visualisation par cas, une augmentation de 60 % du nombre total de fixations du regard et une augmentation de 34 % du temps nécessaire pour détecter des fractures. © Capture d'écran | RSNA 2023

En imagerie aussi, l'erreur est (parfois) humaine. Le 28 novembre dernier, une session du RSNA 2023 a mis en lumière les facteurs humains qui entrent en jeu dans la survenue d’erreurs en radiologie. Michael Bruno, professeur de radiologie à l’université de Pennsylvanie (Pennsylvanie, États-Unis), a énuméré les différents types et causes d’erreurs et a tenu à rendre hommage à un pionnier en la matière. De fait, le radiologue américain Leo Henry Garland, ancien président de la RSNA, fut le premier à s’intéresser aux erreurs en radiologie, dans les années 1940 : « Cela lui a coûté une partie de sa popularité, car, à l’époque, personne ne voulait reconnaître qu’on faisait des erreurs. Il fut le premier à donner une estimation du taux d’erreurs en radiologie : 3 % à 4 % au minimum. »

La discipline évolue, mais les erreurs persistent

Les erreurs en radiologie résultent principalement d’un défaut de perception ou d’interprétation mais peuvent aussi venir d'un mauvais raisonnement, d’un manq

Il vous reste 77% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Carla Ferrand

Journaliste cheffe de rubrique

Voir la fiche de l’auteur

Bibliographie

  1. Bernstein, M. H., Atalay, M. K., Dibble, E. H., et coll., « Can incorrect artificial intelligence (AI) results impact radiologists, and if so, what can we do about it? A multi-reader pilot study of lung cancer detection with chest radiography », European Radiology, 2 juin 2023. DOI : 10.1007/s00330-023-09747-1.
  2. Hanna, T. N., Zygmont, M. E., Peterson, R., et coll., « The Effects of Fatigue From Overnight Shifts on Radiology Search Patterns and Diagnostic Performance », Journal of the American College of Radiology, 21 janvier 2018. DOI : 10.1016/j.jacr.2017.12.019.
  3. Hanna, T. N., Lamoureux, C., Krupinski, E. A., et coll., « Effect of Shift, Schedule, and Volume on Interpretive Accuracy: A Retrospective Analysis of 2.9 Million Radiologic Examinations », Radiology, 20 novembre 2017. DOI : 10.1148/radiol.2017170555.

Discussion

Aucun commentaire

Laisser un commentaire

Le fil Docteur Imago

05 Déc

7:09

La seconde interprétation des examens de médecine nucléaire pédiatrique par des radiopédiatres spécialisés en médecine nucléaire a entraîné des changements susceptibles d'avoir un impact sur la prise en charge clinique dans 17 % des cas (étude).
04 Déc

16:10

Une étude, présentée au RSNA, a révélé que l'obésité abdominale, parfois appelée « ventre à bière », est associée à des modifications de la structure cardiaque en plus du poids, en particulier chez les hommes. Ces résultat mettent également en lumière les mesures que les patients et les médecins peuvent prendre pour identifier les risques potentiels et intervenir plus tôt afin de protéger le cœur.

11:00

La forme du muscle grand fessier change de différentes manières avec l’âge, le mode de vie, l’ostéoporose ou le diabète de type 2, et ces changements diffèrent entre les femmes et les hommes, selon une nouvelle étude présentée lors du RSNA. (Etude)

7:11

Un modèle de deep learning a amélioré la qualité d'image de l'IRM à faible dose de contraste pour l'imagerie de la citerne de l'angle ponto-cérébelleux, permettant la détection des lésions et la caractérisation diagnostique avec 10 à 30 % de la dose standard (étude).
Docteur Imago

GRATUIT
VOIR