Communication des résultats

Une étude révèle les différents facteurs à l’œuvre dans l’hétérogénéité entre comptes rendus radiologiques

Une étude française parue en mars a décortiqué les paramètres expliquant l'hétérogénéité entre les comptes rendus d’examens d’imagerie d’urgence. Ses résultats permettent d'espérer une personnalisation accrue des logiciels de saisie pour améliorer l'homogénéité des comptes rendus radiologiques.

icon réservé aux abonnésArticle réservé aux abonnés
Le 15/06/22 à 7:00, mise à jour le 11/09/23 à 13:30 Lecture 4 min.

Les chercheurs ons recherché les causes majeures d'hétérogénéité en analysant une sélection de 30 227 comptes rendus (photo d'illustration). © Virginie Facquet

L'expérience, la charge de travail antérieure, la spécialisation, le sexe… De nombreux facteurs interviennent dans la manière dont les radiologues s'expriment. Mais lesquels participent le plus à l'hétérogénéité entre comptes rendus radiologiques ? C'est la problématique à laquelle s’est attaqué un groupe de radiologues français, dont les conclusions sont parues le 22 mars dans Journal of Digital Imaging [1].

Améliorer l’homogénéité des comptes rendus

« Ce travail est issu d'un questionnement sur nos pratiques. Nous cherchons à améliorer l'homogénéité de nos comptes rendus », commente Guillaume Gorincour, dernier auteur de l'étude, radiologue et directeur scientifique d'Imadis, service français de téléradiologie d'urgence comptant plus de 100 associés. L'enjeu est de taille pour améliorer les pratiques et les connaissances radiologiques. « Quand on veut analyser des comptes rendus hétérogènes, un certain nombre de dossiers ne sont pas exploitables, explique Guillaume Gorincour. En réalis

Il vous reste 84% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Bibliographie

  1. Crombé A., Seux M., Bratan F. et coll., « What influences the way radiologists express themselves in their reports? A quantitative assessment using natural language processing », Journal of Digital Imaging, 22 mars 2022. DOI : 10.1007/s10278-022-00619-6.
  2. Ben Cheikh A., Gorincour G., Nivet H. et coll., « How artificial intelligence improves radiological interpretation in suspected pulmonary embolism », European Radiology, 22 mars 2022. DOI : https://doi.org/10.1007/s00330-022-08645-2.
  3. Banaste N., Caurier B., Bratan F. et coll., « Whole-body CT in patients with multiple traumas: factors leading to missed injury », Radiology, novembre 2018, vol. 289, n° 2. Epub 7 août 2018. DOI : 10.1148/radiol.2018180492.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

12 Jan

16:00

Des modèles de langage ajustés avec précision à l'aide d'informations cliniques et radiologiques ont prédit avec exactitude les comptes rendus les plus prioritaires, dans le cadre d'une étude présentée dans European Radiology.

13:17

Une première étude chez l'homme confirme la sécurité et le profil pharmacocinétique favorable de l'imagerie TEP avec le radiotraceur 64Cu-Macrin dans la prise en charge du cancer et de la sarcoïdose.

7:30

Les marqueurs radiomiques hypothalamiques dérivés de l'IRM pondérée T1 et extraits associés à des caractéristiques cliniques offrent une approche d'exploration prometteuse pour prédire l'apnée obstructive du sommeil. Étude.
09 Jan

16:11

Une étude publiée dans BMC Urology a évalué la capacité de plusieurs grands modèles de langage à classer des comptes rendus d’IRM de la prostate selon le système PI-RADS v2.1. Le modèle GPT-o1 montre la meilleure concordance avec les radiologues, mais tous les modèles présentent des limites pour les lésions PI-RADS 3.
Docteur Imago

GRATUIT
VOIR