RSNA 2021

L’IA déploie son potentiel pour accélérer l’imagerie musculosquelettique

Une session du RSNA 2021 a décrit les applications actuelles et futures de l’apprentissage profond en IRM musculosquelettique. Les avancées dans ce domaine doivent permettre notamment d'améliorer le confort des patients et l'accès à l'imagerie, tout en optimisant la qualité d'image.

icon réservé aux abonnésArticle réservé aux abonnés
Le 15/03/22 à 16:00, mise à jour le 11/09/23 à 13:30 Lecture 3 min.

« Accélérer l’IRM permettrait d’améliorer le confort des patients, de réduire le recours à la sédation lors des examens pédiatriques, d’optimiser la qualité d’image en réduisant les artefacts de mouvement, et d’élargir l’accès à l’imagerie dans des zones géographiques où le nombre de machines est limité », indique Michael Paul Recht. capture d'écran RSNA 2021

Le 30 novembre 2021, le congrès de la Société nord-américaine de radiologie (RSNA) a consacré une session aux technologies d’IA appliquées à l'imagerie musculosquelettique. Michael Paul Recht, chef du service d’imagerie médicale du NYU Langone Health (États-Unis) a souligné le potentiel de la reconstruction basée sur l’apprentissage profond (deep learning) pour accélérer l’IRM musculosquelettique. « Accélérer l’IRM est utile pour plusieurs raisons, avance-t-il. Cela permettrait d’améliorer le confort des patients, de réduire le recours à la sédation lors des examens pédiatriques, d’optimiser la qualité d’image en réduisant les artefacts de mouvement, et enfin d’élargir l’accès à l’imagerie dans des zones géographiques où le nombre de machines est limité. »

Une équation problématique

Cependant, accélérer l’IRM sans perdre en qualité est une équation complexe : « La qualité d’image est inversement proportionnelle à la vitesse d’acquisition, rappelle l’orateur. Lorsqu’on augmente la vitesse

Il vous reste 79% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Carla Ferrand

Bibliographie

  1. Recht M. P., Zbontar J., Sodickson D. K. et coll., « Using deep learning to accelerate knee MRI at 3 T: Results of an interchangeability study », American Journal of Roentgenology, décembre 2020, vol. 215, n° 5. DOI : 10.2214/AJR.20.23313.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

09 Jan

15:51

L’hôpital de Morteau (Doubs) a inauguré le 16 décembre un nouveau service de radiologie, trois ans après l’annonce de la fermeture du cabinet de radiologie de la ville, informe L'Est républicain.

13:30

La Haute Autorité de santé a annoncé le 20 décembre dans un communiqué de presse la création en son sein d'un service « exclusivement dédié à l’évaluation médicoéconomique ».

7:30

Le cannabidiol (CBD) est sûr chez les femmes atteintes d’un cancer du sein avancé et d’anxiété clinique, selon un essai clinique randomisé de phase II. Les niveaux d’anxiété étaient significativement plus faibles dans le bras CBD par rapport au placebo, suggérant un possible effet anxiolytique qui justifie une enquête plus approfondie. Étude.

14:08

Une étude transversale publiée dans JAMA Network révèle que l’utilisation de l’intelligence artificielle en radiologie serait liée à l’épuisement professionnel des radiologues, surtout chez ceux avec une charge de travail élevée et une faible acceptation de l’IA. Ces résultats soulignent l’importance d’une intégration harmonieuse des outils d’IA pour réduire ce phénomène.
Docteur Imago

GRATUIT
VOIR