Le 30 novembre 2021, le congrès de la Société nord-américaine de radiologie (RSNA) a consacré une session aux technologies d’IA appliquées à l'imagerie musculosquelettique. Michael Paul Recht, chef du service d’imagerie médicale du NYU Langone Health (États-Unis) a souligné le potentiel de la reconstruction basée sur l’apprentissage profond (deep learning) pour accélérer l’IRM musculosquelettique. « Accélérer l’IRM est utile pour plusieurs raisons, avance-t-il. Cela permettrait d’améliorer le confort des patients, de réduire le recours à la sédation lors des examens pédiatriques, d’optimiser la qualité d’image en réduisant les artefacts de mouvement, et enfin d’élargir l’accès à l’imagerie dans des zones géographiques où le nombre de machines est limité. »
Une équation problématique
Cependant, accélérer l’IRM sans perdre en qualité est une équation complexe : « La qualité d’image est inversement proportionnelle à la vitesse d’acquisition, rappelle l’orateur. Lorsqu’on augmente la vitesse
Discussion
Aucun commentaire
Commenter cet article