Radiomique

Une publication compare les algorithmes d’apprentissage profond les plus utiles en radiomique

Un article écrit par des radiologues et statisticiens français et paru le 28 août 2023 dans Scientific Reports a cherché à identifier les algorithmes d'apprentissage profond les plus efficaces en radiomique, en utilisant différentes bases de données d'imagerie.

icon réservé aux abonnésArticle réservé aux abonnés
Le 21/12/23 à 15:00 Lecture 2 min.

Les auteurs de l'étude ont testé 9 algorithmes de sélection de caractéristiques et 14 algorithmes de classification binaire, soit 126 combinaisons d’algorithmes d'apprentissage profond en radiomique testées et entraînées pour déterminer leur performance, via leur aire sous la courbe ROC (image d'illustration). D. R.

Définissable comme l’exploration de grandes quantités d’images radiologiques par des méthodes algorithmiques afin d’en extraire des caractéristiques statistiques cachées aux yeux des radiologues, la radiomique attire particulièrement les vendeurs d'IA et les radiologues, au vu des rapides progrès de l'intelligence artificielle. Toutefois, la recherche dans ce domaine n'est pas encore stabilisée et la radiomique n'a pas encore atteint la clinique, en partie par manque d'une méthodologie standardisée.

126 combinaisons d'algorithmes testées

Afin de pallier le manque de recommandations concernant les algorithmes d’apprentissage profond à utiliser en radiomique, des radiologues et statisticiens français ont testé 9 algorithmes de sélection de caractéristiques et 14 algorithmes de classification binaire, soit 126 combinaisons d’algorithmes d'apprentissage profond de radiomique. Chacun de ces algorithmes a ensuite été entraîné, puis testé trois fois pour déterminer ses performances via l'ai

Il vous reste 67% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

François Mallordy

Journaliste rédacteur spécialisé

Voir la fiche de l’auteur

Bibliographie

  1. Decoux A., Duron L., Habert P. et coll., « Comparative performances of machine learning algorithms in radiomics and impacting factors », Scientific Reports, 28 août 2023. DOI : 10.1038/s41598-023-39738-7.

Discussion

Aucun commentaire

Laisser un commentaire

Le fil Docteur Imago

31 Mar

16:00

22 % des médecins répondants à une enquête du Conseil de l'Ordre considèrent leur prise en charge des patients en situation de handicap comme insuffisante ou peu suffisante en raison du manque de temps, de moyens humains et matériels ou encore le manque de formation ou l'inadaptabilité des locaux. 35 % considèrent que l'accès aux soins des patients en situation de handicap est difficile.

13:00

Un décret publié le 19 mars détermine les modalités d'encadrement de l'activité de remise en bon état d'usage de certaines catégories de dispositifs médicaux à usage individuel. La liste des dispositifs concernés sera définie par arrêté.

7:30

La Haute Autorité de santé (HAS) a publié le 20 mars une mise à jour de son Guide pour l'évaluation des infrastructures de simulation en santé, élaborée avec la Société francophone de simulation en santé. Ce document s'adresse aux structures de simulation et aux plateformes de simulation en santé qui souhaitent s'inscrire dans une démarche d'amélioration continue de la qualité, indique la HAS.
28 Mar

16:37

La SFR met en place l’application mobile SFR-JUISCI permettant aux utilisateurs d’accéder aux récentes recherches en radiologie. L’appli est à télécharger via la lien : https://lnkd.in/eW4i956c
Docteur Imago

GRATUIT
VOIR