Apprentissage profond

Une IA open source pour diviser par 3 à 10 le temps d’examen en IRM cérébrale

Des chercheurs et des spécialistes allemands ont développé en open source un réseau de neurones convolutifs optimisant la reconstruction d'images en IRM par sous-échantillonnage de l'espace k. Utilisé dans le cadre d'une étude rétrospective multicentrique parue en mars dans The Lancet Oncology et portant sur des glioblastomes, le logiciel a réduit le temps d'examen sans dégradation de l'interprétation et de la qualité des images.

icon réservé aux abonnésArticle réservé aux abonnés
Le 18/04/24 à 15:00 Lecture 3 min.

Le logiciel développé par les chercheurs allemands assiste la reconstruction d'images d'IRM sous-échantillonnées. À gauche, une image d'IRM (séquence T1) standard. À droite, sur la ligne du dessus, les images sous-échantillonnées de la même IRM reconstruites sans IA avec des taux d'accélération de reconstruction R grandissants : sur la ligne du dessous, après la reconstruction par IA. © Adapted from Rastogi et al, The Lancet Oncology | CC BY 4.0 DEED

Malgré son intérêt clinique, l'IRM peine encore à se démocratiser dans les usages. Si la France est bien équipée en machines, environ 70 % de la population mondiale n'y a pas accès. À son coût d'installation et de maintien s'ajoute l'obstacle du temps d'acquisition, qui restreint le nombre d'examens par machine et limite son usage chez certains patients claustrophobes. Sur cette question de l'acquisition, l'intelligence artificielle (IA) pourrait fournir des solutions, si l'on en croit un article paru en mars dans The Lancet Oncology [1].

Reconstruire une image sous-échantillonnée

Ses auteurs, des neuroradiologues allemands, ont développé un outil d'IA open source utilisant l'apprentissage profond pour accélérer la reconstruction des images d'IRM. Son principe ? Réaliser un sous-échantillonnage de l'espace k, puis le transmettre à un réseau de neurones convolutifs maison afin que ce dernier reconstruise à partir de ces données partielles une image d'IRM de qualité similaire à celle d

Il vous reste 76% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Bibliographie

  1. Rastogi A., Brugnara G., Foltyn-Dumitru M. et al, « Deep-learning-based reconstruction of undersampled MRI to reduce scan times: a multicentre, retrospective, cohort study », The Lancet Oncology, mars 2024. DOI : 10.1016/S1470-2045(23)00641-1.

Discussion

Aucun commentaire

Laisser un commentaire

Le fil Docteur Imago

16 Jan

7:13

Bayer a annoncé la conclusion d’accords définitifs pour l’acquisition auprès d’Attralus de deux agents d’imagerie moléculaire expérimentaux, AT-01 et AT-05, destinés au diagnostic de l’amyloïdose cardiaque. Cette opération stratégique renforce la position de Bayer dans l’imagerie moléculaire et s’inscrit dans le développement de sa stratégie de cardiologie de précision, annonce un communiqué.
15 Jan

15:14

Les élections de l’European Society of Radiology (ESR) se tiendront du 8 au 21 janvier 2026. Deux candidates soutenues par la SFR, les professeurs Isabelle Thomassin-Naggara et Corinne Balleyguier, présentent leur candidature. Les radiologues français membres de l’ESR sont appelé à se mobiliser en votant par courriel : voting@polyas.com.

13:13

Bien que les unités mobiles de mammographie puissent améliorer l’accès aux soins pour des populations médicalement défavorisées, une étude pilote publiée dans Academic Radiology, met en lumière des opportunités pour promouvoir un suivi rapide et équitable des mammographies de dépistage anormales grâce à une meilleure navigation des patients, un soutien social et une aide financière.

7:11

Stéphanie Rist, la ministre de la santé, a présenté une stratégie nationale pour lutter contre la désinformation médicale. Elle prévoit notamment la création d’un observatoire de la désinformation en santé et d’un dispositif d’infovigilance afin de répondre plus rapidement aux fausses informations
Docteur Imago

GRATUIT
VOIR