Intelligence artificielle

Des outils de deep learning pour chaque besoin en imagerie cardiovasculaire

Un webinaire organisé par le CERF s'est intéressé aux applications de l'IA en imagerie cardiovasculaire. À chaque étape du processus, de l'acquisition au compte rendu, les outils d'IA ont un rôle à jouer mais les solutions développées doivent encore être perfectionnées.

icon réservé aux abonnésArticle réservé aux abonnés
Le 16/02/21 à 16:00, mise à jour aujourd'hui à 14:09 Lecture 5 min.

Le webinaire du CERF sur les applications de l’IA en imagerie cardiovasculaire s’est intéressé à l’apport du deep learning aux différentes étapes du workflow (photo d'illustration). © C. F.

Le 8 février, le webinaire du Collège des enseignants en radiologie de France (CERF) sur les applications de l’intelligence artificielle (IA) en imagerie cardiovasculaire s’est intéressé à l’apport du deep learning (apprentissage profond) aux différentes étapes du workflow. « L’imagerie cardiaque a des spécificités qui entraînent des difficultés pour les radiologues et pour lesquelles l’IA peut donc avoir un intérêt », a introduit Axel Bartoli, radiologue à l’hôpital de la Timone – Assistance publique – Hôpitaux de Marseille (AP-HM). Les difficultés se manifestent dès l’acquisition, du fait des mouvements du cœur. En IRM, le positionnement des coupes est essentiel « pour voir des paramètres fonctionnels de bonne qualité ». Au coroscanner, la problématique vient de la dose de rayonnements.

L’étape obligatoire du post-traitement

L’autre spécificité de l’imagerie cardiaque est l’importance du post-traitement : « En IRM cardiaque, on va toujours faire de la segmentation pour obtenir des para

Il vous reste 86% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Carla Ferrand

Bibliographie

  1. Hong J. H., Park E.-A., Lee W. et coll., « Incremental image noise reduction in coronary CT angiography using a deep learning-based technique with iterative reconstruction », Korean Journal of Radiology, octobre 2020, vol. 21, n° 10, p. 1165-1177. DOI : 10.3348/kjr.2020.0020.
  2. Bernard O., Lalande A., Zotti C. et coll., « Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved ? », IEEE Transactions on Medical Imaging, novembre 2018, vol. 37, n° 11, p. 2514-2525. DOI : 10.1109/TMI.2018.2837502.o.
  3. Bartoli A., Fournel J., Bentatou Z. et coll., « Deep learning-based automated segmentation of left ventricular trabeculations and myocardium on cardiac MR Images: a feasibility study », Radiology: Artificial Intelligence, janvier 2021, vol. 3, n° 1. DOI : 10.1148/ryai.2020200021.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

21 Fév

13:40

Selon une étude publiée dans Radiology, un algorithme d’apprentissage profond disponible dans le commerce peut permettre des examens IRM de l’épaule de bonne qualité en sept minutes.

7:37

Le parlement a adopté définitivement le budget 2025 de la Sécurité sociale ce 17 février. Il prévoit une hausse des dépenses d’Assurance maladie de 3,4 %, pour atteindre un montant de 265 milliards d’euros.
20 Fév

16:01

L’imagerie des paramètres d’atténuation par ultrasons peut être utilisée pour le dépistage clinique afin d’évaluer la prévalence de la MASLD chez les patients en surpoids ou obèses et de suivre de manière dynamique la progression de la maladie, conclut une étude publiée dans Clinical radiology.

13:31

Le modèle de langage appelé Axpert démontre un potentiel de marquage automatique de l’entérocolite nécrosante sur les comptes-rendus de radiographie abdominale infantile. Cette méthode de marquage peut ainsi servir de cadre pour d’autres modalités d’imagerie et maladies chez les enfants, et les maladies rares chez l’adulte, suggère une étude publiée dans JAMIA Open.
Docteur Imago

GRATUIT
VOIR