Le 8 février, le webinaire du Collège des enseignants en radiologie de France (CERF) sur les applications de l’intelligence artificielle (IA) en imagerie cardiovasculaire s’est intéressé à l’apport du deep learning (apprentissage profond) aux différentes étapes du workflow. « L’imagerie cardiaque a des spécificités qui entraînent des difficultés pour les radiologues et pour lesquelles l’IA peut donc avoir un intérêt », a introduit Axel Bartoli, radiologue à l’hôpital de la Timone – Assistance publique – Hôpitaux de Marseille (AP-HM). Les difficultés se manifestent dès l’acquisition, du fait des mouvements du cœur. En IRM, le positionnement des coupes est essentiel « pour voir des paramètres fonctionnels de bonne qualité ». Au coroscanner, la problématique vient de la dose de rayonnements.
L’étape obligatoire du post-traitement
L’autre spécificité de l’imagerie cardiaque est l’importance du post-traitement : « En IRM cardiaque, on va toujours faire de la segmentation pour obtenir des para
Discussion
Aucun commentaire
Commenter cet article