Évaluation de l'IA

En radiographie thoracique, l’expérience et la surspécialité ne prédisent pas l’impact de l’IA

Une étude d'envergure évaluant l'effet d'une IA d'aide au diagnostic en radiographie thoracique conclut qu'il n'est pas prédictible par l'expérience du radiologue, sa surspécialité ou encore sa propension à utiliser des outils d'IA. Par contre, les prédictions fautives de l'IA influencent négativement la performance des radiologues. L'article est paru mi-mars dans Nature Medicine.

icon réservé aux abonnésArticle réservé aux abonnés
Le 22/05/24 à 15:00 Lecture 2 min.

« Nos résultats soulignent l'importance de développer des collaborations IA-clinicien personnalisées, ainsi que l'importance de la précision des modèles d'IA », affirment les auteurs de l'étude (image d'illustration). D. R.

L'aide au diagnostic par intelligence artificielle (IA) en radiographie thoracique a le vent en poupe. Mais à quel point ces logiciels apportent-ils une plus-value significative aux radiologues, et suivant quels critères prédictifs ? Alors que plusieurs études pointent vers une amélioration de la performance apportée par l'IA chez les non-radiologues et les imageurs non-spécialistes, une récente publication remet en cause l'importance de ces facteurs pour prédire l'impact de l'IA sur les praticiens [1].

140 radiologues inclus dans l'étude

Dans cette étude publiée le 19 mars 2024 dans Nature Medicine, une équipe de chercheurs américains a essayé de disséquer en détail l'impact individuel d'un logiciel d'IA d'aide au diagnostic en radiographie thoracique (modèle CheXpert, entraîné sur le jeu de données du même nom) sur 140 radiologues, surspécialisés ou non en radiographie thoracique. Le logiciel permettait d'identifier 15 pathologies en radiologie thoracique diagnostique.

Différents

Il vous reste 70% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Bibliographie

  1. Yu F., Moehring A., Banerjee O. et al, « Heterogeneity and predictors of the effects of AI assistance on radiologists », Nature Medicine, 19 mars 2024. DOI : 10.1038/s41591-024-02850-w.

Discussion

Aucun commentaire

Laisser un commentaire

Le fil Docteur Imago

31 Oct

7:45

Une note technique parue dans European Radiology Experimental illustre l’utilisation intégrale du scanner à comptage photonique (PCD-CT) spectral à ultra haute résolution dans le cas d’une blessure au genou. Cette modalité permet, selon les auteurs, une évaluation complète des fractures, des œdèmes et des tissus mous et peut améliorer la prise de décision clinique précoce en cas de traumatisme du genou.
30 Oct

15:51

Recevoir des résultats de radiologie par le biais du dossier médical informatisé peut entraîner de la confusion et de la détresse chez les patients, indique une étude publiée dans Current Problems in Diagnostic Radiology. Parmi les suggestions visant à améliorer la situation et la compréhension figurent l’ajout d’un résumé vulgarisé et la définition de systèmes de notation.

13:44

La mesure par IRM de la graisse hépatique est fortement associée aux risques de prédiabète et de diabète de type 2 chez les patients obèses, selon une étude publiée dans Radiology.

7:43

La thrombectomie mécanique est une option de traitement prometteuse et sûre pour le traitement de l'AVC aigu chez les patients pédiatriques, avec une recanalisation réussie en moyenne dans 88 % des cas, selon une méta-analyse parue dans Neuroradiology.
Docteur Imago

GRATUIT
VOIR