Évaluation de l'IA

En radiographie thoracique, l’expérience et la surspécialité ne prédisent pas l’impact de l’IA

Une étude d'envergure évaluant l'effet d'une IA d'aide au diagnostic en radiographie thoracique conclut qu'il n'est pas prédictible par l'expérience du radiologue, sa surspécialité ou encore sa propension à utiliser des outils d'IA. Par contre, les prédictions fautives de l'IA influencent négativement la performance des radiologues. L'article est paru mi-mars dans Nature Medicine.

icon réservé aux abonnésArticle réservé aux abonnés
Le 22/05/24 à 15:00 Lecture 2 min.

« Nos résultats soulignent l'importance de développer des collaborations IA-clinicien personnalisées, ainsi que l'importance de la précision des modèles d'IA », affirment les auteurs de l'étude (image d'illustration). D. R.

L'aide au diagnostic par intelligence artificielle (IA) en radiographie thoracique a le vent en poupe. Mais à quel point ces logiciels apportent-ils une plus-value significative aux radiologues, et suivant quels critères prédictifs ? Alors que plusieurs études pointent vers une amélioration de la performance apportée par l'IA chez les non-radiologues et les imageurs non-spécialistes, une récente publication remet en cause l'importance de ces facteurs pour prédire l'impact de l'IA sur les praticiens [1].

140 radiologues inclus dans l'étude

Dans cette étude publiée le 19 mars 2024 dans Nature Medicine, une équipe de chercheurs américains a essayé de disséquer en détail l'impact individuel d'un logiciel d'IA d'aide au diagnostic en radiographie thoracique (modèle CheXpert, entraîné sur le jeu de données du même nom) sur 140 radiologues, surspécialisés ou non en radiographie thoracique. Le logiciel permettait d'identifier 15 pathologies en radiologie thoracique diagnostique.

Différents

Il vous reste 70% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

François Mallordy

Journaliste rédacteur spécialisé

Voir la fiche de l’auteur

Bibliographie

  1. Yu F., Moehring A., Banerjee O. et al, « Heterogeneity and predictors of the effects of AI assistance on radiologists », Nature Medicine, 19 mars 2024. DOI : 10.1038/s41591-024-02850-w.

Discussion

Aucun commentaire

Laisser un commentaire

Le fil Docteur Imago

12 Fév

7:11

Le LLM polyvalent (Cohere Command-A) évalué dans une étude a démontré de solides performances dans l’automatisation de la stadification FIGO pour les cancers du col de l’utérus et de l’endomètre à partir des rapports IRM. Leur intégration pourrait réduire la charge de travail des radiologues.
11 Fév

16:09

Median Technologies a obtenu l’autorisation 510(k) de la FDA pour son dispositif médical eyonis® LCS.  Basé sur l’IA. Celui-ci vise à transformer le dépistage du cancer du poumon en aidant à son diagnostic à des stages précoces et curables et ce, en limitant les examens de suivi inutiles et les faux positifs.

13:30

Un rapport conjoint publié en janvier 2026, de la joint commission, organisme de certification aux Etats-Unis et du National Quality Forum (NQF), mentionne le « Préjudice au patient associé à une lésion thermique liée à l'IRM », comme un domaine d’inquiétude important. Les deux organismes américains ont aligné leurs listes des événements Sentinel et « événements graves à signaler », afin de simplifier le signalement des événements de sécurité des patients. (Source)

7:16

L’obésité réduit la performance de la radiographie thoracique pour le diagnostic de pneumonie, avec une concordance et une sensibilité nettement inférieures à celles observées chez les patients non obèses. Dans ce contexte, le scanner thoracique démontre une précision diagnostique supérieure pour la pneumonie, chez les patients obèses. (Étude)
Docteur Imago

GRATUIT
VOIR