Intelligence artificielle

L’apprentissage profond scrute les lésions cérébrales au scanner

Grâce au deep learning, une équipe indienne a mis au point des algorithmes capables de détecter « avec précision » les signes d’un traumatisme crânien sur des images de scanner non injecté. Ils pourraient aider à détecter les patients nécessitant une attention urgente.

icon réservé aux abonnésArticle réservé aux abonnés
Le 25/10/18 à 15:00, mise à jour hier à 14:19 Lecture 2 min.

Les auteurs de l'étude ont collecté les données de 313 318 scanners cérébraux (photo d'illustration).. Par Lipothymia — Anonymised CT scan from my own practice, CC BY-SA 3.0, Lien

Des scientifiques indiens ont développé et testé des algorithmes capables de détecter des signes de traumatisme crânien sur des images de scanner non injecté. Les signes en question sont les cinq types d’hémorragies intracrâniennes (intraparenchymateuse, intraventriculaire, sous-durale, extradurale et sous-arachnoïdienne), les fractures de la voûte crânienne, l’effet de masse et le déplacement de la ligne médiane.

Des radiologues et des experts en IA

Les chercheurs, emmenés par Sasank Chilamkurthy, ont mené une étude prospective dont ils publient les résultats dans la revue The Lancet [1]. L’équipe se compose d’experts en intelligence artificielle de la société indienne Qure.ai, de scientifiques du Centre de recherche avancée en imagerie de New Dehli, de Mustafa Biviji, radiologue au CT & MRI Center de Nagpur et de Norbert Campeau, radiologue à la Mayo Clinic de Rochester.

Une base de données de plus de 300 000 scanners

Pour réaliser leur étude, ils ont collecté les données de 313 318 scan

Il vous reste 72% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Carla Ferrand

Journaliste cheffe de rubrique

Voir la fiche de l’auteur

Bibliographie

  1. Chilamkurthy S., Ghosh R., Tanamala S., « Deep learning algorithms for detection of critical findings in head CT scans : a retrospective study », The Lancet, 11 octobre 2018, publication en ligne. DOI : 10.1016/S0140-6736(18)31645-3

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

27 Nov

7:10

L’intelligence artificielle (IA) est de plus en plus intégrée dans la recherche et la pratique en radiographie. Selon une étude parue dans Radiography, GenAI et les LLM offrent des opportunités transformatrices pour la recherche en radiographie à travers plusieurs étapes, de la conception de l’étude à la diffusion. Leur intégration exige toutefois une validation rigoureuse et des garanties éthiques pour limiter les biais, les erreurs et les risques liés à la confidentialité.

14:29

Une étude a évalué sept modèles LLM en open-source pour la synthèse des rapports radiologiques de patients ayant été victime d'un AVC ischémique aigu. Quatre modèles ont résumé efficacement des comptes rendus et pourraient être intégrés dans des flux radiologiques.

11:15

Selon une étude publiée dans l'American Journal of Roentgenology, la prévalence de malignité parmi les nodules surrénaliens indéterminés découverts fortuitement lors d'une tomodensitométrie avec injection de produit de contraste chez des patients sans cancer connu est extrêmement faible.

7:28

Si l'intelligence artificielle est très prometteuse chez l'adulte pour la détection et la caractérisation des nodules, ce n'est pas le cas sur les nodules pulmonaires pédiatriques, selon une récente étude. Celle-ci souligne la nécessité d'avoir une IA spécifique à la pédiatrie.    
Docteur Imago

GRATUIT
VOIR