Urgences

L’IA améliore la performance des non-radiologues sur les radiographies thoraciques

icon réservé aux abonnésArticle réservé aux abonnés
Le 08/02/24 à 7:00

Dans le cadre de cette étude, 563 radios thoraciques acquises aux urgences ont été évaluées rétrospectivement à deux reprises par trois radiologues certifiés, trois internes en radiologie et trois non-radiologues et ont été comparées à la performance de l’algorithme (photo d'illustration). © Zackstarr - Radiologist | Wikimedia

Une équipe de chercheurs de l'hôpital universitaire de Munich (Allemagne) a évalué un système d’IA basé sur un réseau de neurones convolutifs, pour la détection des pathologies pulmonaires dans un service d'urgence. Les résultats ont fait l'objet d'une publication dans la revue Chest [1].

L’IA formée sur des données publiques et expertes

Cet algorithme d'IA interprétant les radiographies pulmonaires a été entraîné sur des données publiques provenant de plusieurs hôpitaux comportant des consolidations suspectes de pneumonie, des pneumothorax, des nodules et des épanchements pleuraux. Ces pathologies qui nécessitent un traitement immédiat pour déterminer si la maladie est aiguë nécessitent un haut niveau d'expertise pour une évaluation précise. Une tâche qui n'est pas toujours simple pour les non-radiologues des urgences, parfois tenus de prendre seuls des décisions cliniques basées sur les résultats d'imagerie.

563 radios thoraciques évaluées

Dans le cadre de cette étude de validati

Il vous reste 58% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Solenn Duplessy

Voir la fiche de l’auteur

Bibliographie

  1. Rudolph J., Huemmer C., Preuhs A. et al., « Non-radiology Healthcare Professionals Significantly Benefit from AI-Assistance in Emergency-Related Chest Radiography Interpretation », Chest, 29 janvier 2024 (pre-proof). DOI : 10.1016/j.chest.2024.01.039.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

19 Nov

15:30

GE HealthCare et DeepHealth, filiale de la société RadNet, ont annoncé leur intention d'étendre leur collaboration pour favoriser l'innovation, la commercialisation et l'adoption de l'IA dans diverses modalités d'imagerie, ont-ils annoncé dans un communiqué.

13:13

Deux modèles basés sur l'apprentissage machine supervisé ont surpassé de manière significative le dosage des PSA (seuil > 4 ng/mL) pour l'estimation du risque d'IRM anormale de la prostate dans une étude incluant près de 12 000 examens.

7:49

18 Nov

15:48

L'angioscanner pulmonaire double énergie permettrait une réduction de 25 % du volume de produit de contraste par rapport à l'angioscanner pulmonaire classique, tout en offrant une meilleure qualité d'image quantitative sans augmenter l'exposition aux rayonnements (étude).
Docteur Imago

GRATUIT
VOIR