Évaluation du risque de cancer

L’IA meilleure qu’un modèle de risque clinique pour prédire un cancer du sein

Une étude américaine montre que les algorithmes d’IA de mammographie seuls peuvent améliorer la prédiction du risque de cancer du sein dans les 5 ans par rapport aux modèles de risque clinique actuels. La combinaison des deux a encore amélioré la prédiction.

icon réservé aux abonnésArticle réservé aux abonnés
Le 22/06/23 à 15:00, mise à jour le 11/09/23 à 13:24 Lecture 3 min.

Lors de l’utilisation d’un examen de dépistage négatif, l’IA a prédit les risques de cancers du sein de 0 à 5 ans mieux que le modèle de risque clinique du BCSC (photo d'illustration). © Carla Ferrand

Dans le cadre d’une étude de cohorte rétrospective publiée dans la revue Radiology, une équipe de chercheurs américains de l’établissement de santé Kaiser Permanente Northern California a comparé les capacités de cinq algorithmes existants d’intelligence artificielle (IA) et du modèle de risque clinique du Breast Cancer Surveillance Consortium (BCSC) à prédire le risque de cancer du sein sur 5 ans [1].

Des modèles de risque à l'efficacité modérée

Les modèles d’évaluation du risque de cancer du sein tels que le BCSC sont généralement utilisés pour évaluer et orienter les considérations cliniques telles que le risque héréditaire, la nécessité de dépistage supplémentaire ou de médicaments réduisant les risques, souligne l’article. « Ces modèles prennent en compte l’âge, les facteurs cliniques, les facteurs génétiques et la densité mammaire évaluée en mammographie, mais n’ont qu’une discrimination modérée pour prédire le risque de cancer du sein sur 5 ou 10 ans », rapportent les auteurs.

Géné

Il vous reste 77% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Solenn Duplessy

Voir la fiche de l’auteur

Bibliographie

  1. Arasu V. A., Habel L. A., Achacoso N. S. et coll., « Comparison of mammograp^hy AI algorithms with a clinical risk model for 5-year breast cancer risk prediction: an observational study », Radiology, epub 6 juin 2023. DOI : 10.1148/radiol.222733.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

13 Jan

16:14

L'utilisation de l'IA entraînerait une réduction de 33 % des heures travaillées chez les radiologues dans les cinq prochaines années, avec une fourchette allant de 14 % à 49 %. « Compte tenu de la relative stabilité des effectifs en radiologie et de la croissance continue du volume d'imagerie, il est peu probable que les radiologues perdent leur emploi dans un avenir prévisible », concluent les auteurs d'une étude.

14:06

La vérification des antécédents d'imagerie nécessite beaucoup de temps et de ressources. Le temps médian consacré à la vérification était de 31 secondes. Selon les auteurs, il est essentiel de quantifier le temps consacré à cette tâche afin de planifier les effectifs et d'optimiser l'efficacité des services (étude).  

7:14

Une étude rétrospective comparant l’ablation par micro-ondes et la résection chirurgicale chez 172 patients atteints d’hyperparathyroïdie primaire montre des taux de guérison et de rémission à long terme similaires sur cinq ans, sans différence significative de complications.
12 Jan

16:00

Des modèles de langage ajustés avec précision à l'aide d'informations cliniques et radiologiques ont prédit avec exactitude les comptes rendus les plus prioritaires, dans le cadre d'une étude présentée dans European Radiology.
Docteur Imago

GRATUIT
VOIR