Évaluation du risque de cancer

L’IA meilleure qu’un modèle de risque clinique pour prédire un cancer du sein

Une étude américaine montre que les algorithmes d’IA de mammographie seuls peuvent améliorer la prédiction du risque de cancer du sein dans les 5 ans par rapport aux modèles de risque clinique actuels. La combinaison des deux a encore amélioré la prédiction.

icon réservé aux abonnésArticle réservé aux abonnés
Le 22/06/23 à 15:00, mise à jour le 11/09/23 à 13:24 Lecture 3 min.

Lors de l’utilisation d’un examen de dépistage négatif, l’IA a prédit les risques de cancers du sein de 0 à 5 ans mieux que le modèle de risque clinique du BCSC (photo d'illustration). © Carla Ferrand

Dans le cadre d’une étude de cohorte rétrospective publiée dans la revue Radiology, une équipe de chercheurs américains de l’établissement de santé Kaiser Permanente Northern California a comparé les capacités de cinq algorithmes existants d’intelligence artificielle (IA) et du modèle de risque clinique du Breast Cancer Surveillance Consortium (BCSC) à prédire le risque de cancer du sein sur 5 ans [1].

Des modèles de risque à l'efficacité modérée

Les modèles d’évaluation du risque de cancer du sein tels que le BCSC sont généralement utilisés pour évaluer et orienter les considérations cliniques telles que le risque héréditaire, la nécessité de dépistage supplémentaire ou de médicaments réduisant les risques, souligne l’article. « Ces modèles prennent en compte l’âge, les facteurs cliniques, les facteurs génétiques et la densité mammaire évaluée en mammographie, mais n’ont qu’une discrimination modérée pour prédire le risque de cancer du sein sur 5 ou 10 ans », rapportent les auteurs.

Géné

Il vous reste 77% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Solenn Duplessy

Voir la fiche de l’auteur

Bibliographie

  1. Arasu V. A., Habel L. A., Achacoso N. S. et coll., « Comparison of mammograp^hy AI algorithms with a clinical risk model for 5-year breast cancer risk prediction: an observational study », Radiology, epub 6 juin 2023. DOI : 10.1148/radiol.222733.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

31 Mar

16:00

22 % des médecins répondants à une enquête du Conseil de l'Ordre considèrent leur prise en charge des patients en situation de handicap comme insuffisante ou peu suffisante en raison du manque de temps, de moyens humains et matériels ou encore le manque de formation ou l'inadaptabilité des locaux. 35 % considèrent que l'accès aux soins des patients en situation de handicap est difficile.

13:00

Un décret publié le 19 mars détermine les modalités d'encadrement de l'activité de remise en bon état d'usage de certaines catégories de dispositifs médicaux à usage individuel. La liste des dispositifs concernés sera définie par arrêté.

7:30

La Haute Autorité de santé (HAS) a publié le 20 mars une mise à jour de son Guide pour l'évaluation des infrastructures de simulation en santé, élaborée avec la Société francophone de simulation en santé. Ce document s'adresse aux structures de simulation et aux plateformes de simulation en santé qui souhaitent s'inscrire dans une démarche d'amélioration continue de la qualité, indique la HAS.
28 Mar

16:37

La SFR met en place l’application mobile SFR-JUISCI permettant aux utilisateurs d’accéder aux récentes recherches en radiologie. L’appli est à télécharger via la lien : https://lnkd.in/eW4i956c
Docteur Imago

GRATUIT
VOIR