Évaluation du risque de cancer

L’IA meilleure qu’un modèle de risque clinique pour prédire un cancer du sein

Une étude américaine montre que les algorithmes d’IA de mammographie seuls peuvent améliorer la prédiction du risque de cancer du sein dans les 5 ans par rapport aux modèles de risque clinique actuels. La combinaison des deux a encore amélioré la prédiction.

icon réservé aux abonnésArticle réservé aux abonnés
Le 22/06/23 à 15:00, mise à jour le 11/09/23 à 13:24 Lecture 3 min.

Lors de l’utilisation d’un examen de dépistage négatif, l’IA a prédit les risques de cancers du sein de 0 à 5 ans mieux que le modèle de risque clinique du BCSC (photo d'illustration). © Carla Ferrand

Dans le cadre d’une étude de cohorte rétrospective publiée dans la revue Radiology, une équipe de chercheurs américains de l’établissement de santé Kaiser Permanente Northern California a comparé les capacités de cinq algorithmes existants d’intelligence artificielle (IA) et du modèle de risque clinique du Breast Cancer Surveillance Consortium (BCSC) à prédire le risque de cancer du sein sur 5 ans [1].

Des modèles de risque à l'efficacité modérée

Les modèles d’évaluation du risque de cancer du sein tels que le BCSC sont généralement utilisés pour évaluer et orienter les considérations cliniques telles que le risque héréditaire, la nécessité de dépistage supplémentaire ou de médicaments réduisant les risques, souligne l’article. « Ces modèles prennent en compte l’âge, les facteurs cliniques, les facteurs génétiques et la densité mammaire évaluée en mammographie, mais n’ont qu’une discrimination modérée pour prédire le risque de cancer du sein sur 5 ou 10 ans », rapportent les auteurs.

Géné

Il vous reste 77% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Solenn Duplessy

Bibliographie

  1. Arasu V. A., Habel L. A., Achacoso N. S. et coll., « Comparison of mammograp^hy AI algorithms with a clinical risk model for 5-year breast cancer risk prediction: an observational study », Radiology, epub 6 juin 2023. DOI : 10.1148/radiol.222733.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

21 Fév

13:40

Selon une étude publiée dans Radiology, un algorithme d’apprentissage profond disponible dans le commerce peut permettre des examens IRM de l’épaule de bonne qualité en sept minutes.

7:37

Le parlement a adopté définitivement le budget 2025 de la Sécurité sociale ce 17 février. Il prévoit une hausse des dépenses d’Assurance maladie de 3,4 %, pour atteindre un montant de 265 milliards d’euros.
20 Fév

16:01

L’imagerie des paramètres d’atténuation par ultrasons peut être utilisée pour le dépistage clinique afin d’évaluer la prévalence de la MASLD chez les patients en surpoids ou obèses et de suivre de manière dynamique la progression de la maladie, conclut une étude publiée dans Clinical radiology.

13:31

Le modèle de langage appelé Axpert démontre un potentiel de marquage automatique de l’entérocolite nécrosante sur les comptes-rendus de radiographie abdominale infantile. Cette méthode de marquage peut ainsi servir de cadre pour d’autres modalités d’imagerie et maladies chez les enfants, et les maladies rares chez l’adulte, suggère une étude publiée dans JAMIA Open.
Docteur Imago

GRATUIT
VOIR