À l'heure où l'intelligence artificielle (IA) se développe toujours plus en radiologie, évaluer son efficacité clinique potentielle paraît nécessaire pour faire le lien entre recherche et utilisation en vie réelle. Dans une revue systématique publiée le 6 mars dans JAMA Network Open [1], une équipe internationale de chercheurs s'est attelée à la tâche en neuro-imagerie. Surprise : sur les 555 modèles d'IA basés sur des données de neuro-imagerie analysés, 83,1 % présentent un risque de biais global élevé. Pire, aucun n'est perçu par les auteurs comme souhaitable pour une utilisation clinique !
555 IA de diagnostic psychiatrique évaluées
Pour arriver à cette conclusion, les chercheurs ont établi une liste de 517 articles parus entre 1990 et 2022 concernant le développement ou la validation de modèles d'IA basés sur des données de neuro-imagerie. Ces publications évoquaient en tout 555 modèles d'IA diagnostiques, dont près des trois quarts se basaient sur des données d'imagerie médicale (IR
Discussion
Aucun commentaire
Commenter cet article