Détection opportuniste du cancer du pancréas

Un modèle d’IA surpasse les radiologues dans la détection du cancer du pancréas au scanner sans injection

Une étude chinoise multicentrique publiée fin novembre dans Nature Medicine a évalué un nouveau logiciel d'apprentissage profond. Appelé Panda, il détecte les adénocarcinomes canalaires pancréatiques ainsi que les sept lésions pancréatiques les plus courantes. L'algorithme dépasserait la limite supérieure de performance des radiologues experts en détection de lésions lors de la lecture d'examens de scanner non injectés.

icon réservé aux abonnésArticle réservé aux abonnés
Le 17/01/24 à 7:00 Lecture 3 min.

Le modèle Panda vise à détecter la présence d’une lésion pancréatique, à la segmenter et à la classer comme adénocarcinome canalaire pancréatique (PDAC sur l'image) ou comme une autre lésion pancréatique, pouvant relever de sept sous-types. © Cao et al, Nature Medicine | CC BY 4.0 DEED

L’adénocarcinome canalaire pancréatique (ACP) est souvent découvert tardivement à un stade inopérable. Un diagnostic précoce pourrait considérablement améliorer son mauvais pronostic, mais la détection opportuniste de lésions pancréatiques a longtemps été tenue pour impossible en scanner non injecté. Toutefois la donne pourrait changer, si l'on en croit une étude parue le 20 novembre 2023 dans Nature Medicine [1]. Dans cette dernière, des radiologues chinois affirment avoir développé une intelligence artificielle (IA) supérieure aux lecteurs humains pour détecter et classer les lésions pancréatiques en scanner non injecté, Panda.

Un modèle validé sur des données multicentriques

Afin de développer ce modèle utilisant l'apprentissage profond, des chercheurs de l’Institut des maladies du pancréas de Shanghai (SIPD) ont entraîné un algorithme sur un jeu de données issues de 3 208 patients traités dans un unique centre du SIPD entre janvier 2015 et octobre 2020. Ce premier modèle a ensuit

Il vous reste 78% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Solenn Duplessy

Voir la fiche de l’auteur

Bibliographie

  1. Cao, K., Xia, Y., Yao, J., et coll., « Large-scale pancreatic cancer detection via non-contrast CT and deep learning », Nature Medicine, 20 novembre 2023. DOI : 10.1038/s41591-023-02640-w.

Discussion

Aucun commentaire

Laisser un commentaire

Le fil Docteur Imago

12 Jan

16:00

Des modèles de langage ajustés avec précision à l'aide d'informations cliniques et radiologiques ont prédit avec exactitude les comptes rendus les plus prioritaires, dans le cadre d'une étude présentée dans European Radiology.

13:17

Une première étude chez l'homme confirme la sécurité et le profil pharmacocinétique favorable de l'imagerie TEP avec le radiotraceur 64Cu-Macrin dans la prise en charge du cancer et de la sarcoïdose.

7:30

Les marqueurs radiomiques hypothalamiques dérivés de l'IRM pondérée T1 et extraits associés à des caractéristiques cliniques offrent une approche d'exploration prometteuse pour prédire l'apnée obstructive du sommeil. Étude.
09 Jan

16:11

Une étude publiée dans BMC Urology a évalué la capacité de plusieurs grands modèles de langage à classer des comptes rendus d’IRM de la prostate selon le système PI-RADS v2.1. Le modèle GPT-o1 montre la meilleure concordance avec les radiologues, mais tous les modèles présentent des limites pour les lésions PI-RADS 3.
Docteur Imago

GRATUIT
VOIR