Évaluation de l'IA

Un nouveau cadre d’évaluation proposé pour juger de la valeur ajoutée d’une IA en radiologie

icon réservé aux abonnésArticle réservé aux abonnés
Le 11/03/24 à 15:00, mise à jour le 11/03/24 à 15:03

Basé sur une évaluation en sept niveaux, le nouveau cadre d'évaluation RADAR s'inspire du modèle hiérarchique de Fryback et Thornsbury d'évaluation de l'efficacité des examens d'imagerie diagnostique. © Boverhof et al, Insights into Imaging | CC BY 4.0 DEED

À l'heure de la démocratisation de l'intelligence artificielle (IA) en médecine, l'évaluation de la valeur ajoutée apportée à la radiologie par ces logiciels paraît critique pour permettre leur adoption locale en clinique par les praticiens. Dans cette optique, une équipe de sept médecins néerlandais et anglais, dont trois radiologues, a publié le 5 février 2024 une déclaration décrivant un nouveau cadre d'évaluation de l'IA intitulé Radiology AI deployment and assessment rubric (RADAR) [1].

Cinq niveaux d'évaluation clinique, et deux niveaux « au-delà »

Basé sur une évaluation en sept niveaux, le nouveau cadre d'évaluation RADAR s'inspire du modèle hiérarchique de Fryback et Thornsbury d'évaluation de l'efficacité des examens d'imagerie diagnostique [2]. Le système RADAR est organisé en sept niveaux : cinq pour l'évaluation de la valeur clinique de l'IA, et deux pour l'évaluation « au-delà de la valeur clinique » – c'est-à-dire l'évaluation socio-économique de l'IA et l'évaluation d

Il vous reste 50% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Bibliographie

  1. Boverhof B.-J., Redekop W. K., Bos D. et al, « Radiology AI Deployment and Assessment Rubric (RADAR) to bring value-based AI into radiological practice », Insights into Imaging, 5 février 2024. DOI : 10.1186/s13244-023-01599-z.
  2. Fryback D. G., Thornbury J. R., « The Efficacy of Diagnostic Imaging », Medical Decision Making, juin 1991. DOI : 10.1177/0272989X9101100203.
  3. Guenoun D., Zins M., Champsaur P. et al, « French community grid for the evaluation of radiological artificial intelligence solutions (DRIM France Artificial Intelligence Initiative) », Diagnostic and Interventional Imaging, 23 septembre 2023. DOI : 10.1016/j.diii.2023.09.002.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

05 Déc

16:13

14:12

Un système de score basé sur l'IRM pour prédire la spondylodiscite a démontré d'excellentes performances diagnostiques, et serait une méthode précise et standardisée pour la prise de décision clinique (étude).

7:09

La seconde interprétation des examens de médecine nucléaire pédiatrique par des radiopédiatres spécialisés en médecine nucléaire a entraîné des changements susceptibles d'avoir un impact sur la prise en charge clinique dans 17 % des cas (étude).
04 Déc

16:10

Une étude, présentée au RSNA, a révélé que l'obésité abdominale, parfois appelée « ventre à bière », est associée à des modifications de la structure cardiaque en plus du poids, en particulier chez les hommes. Ces résultat mettent également en lumière les mesures que les patients et les médecins peuvent prendre pour identifier les risques potentiels et intervenir plus tôt afin de protéger le cœur.
Docteur Imago

GRATUIT
VOIR