Évaluation de l'IA

Un nouveau cadre d’évaluation proposé pour juger de la valeur ajoutée d’une IA en radiologie

icon réservé aux abonnésArticle réservé aux abonnés
Le 11/03/24 à 15:00, mise à jour le 11/03/24 à 15:03

Basé sur une évaluation en sept niveaux, le nouveau cadre d'évaluation RADAR s'inspire du modèle hiérarchique de Fryback et Thornsbury d'évaluation de l'efficacité des examens d'imagerie diagnostique. © Boverhof et al, Insights into Imaging | CC BY 4.0 DEED

À l'heure de la démocratisation de l'intelligence artificielle (IA) en médecine, l'évaluation de la valeur ajoutée apportée à la radiologie par ces logiciels paraît critique pour permettre leur adoption locale en clinique par les praticiens. Dans cette optique, une équipe de sept médecins néerlandais et anglais, dont trois radiologues, a publié le 5 février 2024 une déclaration décrivant un nouveau cadre d'évaluation de l'IA intitulé Radiology AI deployment and assessment rubric (RADAR) [1].

Cinq niveaux d'évaluation clinique, et deux niveaux « au-delà »

Basé sur une évaluation en sept niveaux, le nouveau cadre d'évaluation RADAR s'inspire du modèle hiérarchique de Fryback et Thornsbury d'évaluation de l'efficacité des examens d'imagerie diagnostique [2]. Le système RADAR est organisé en sept niveaux : cinq pour l'évaluation de la valeur clinique de l'IA, et deux pour l'évaluation « au-delà de la valeur clinique » – c'est-à-dire l'évaluation socio-économique de l'IA et l'évaluation d

Il vous reste 50% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Bibliographie

  1. Boverhof B.-J., Redekop W. K., Bos D. et al, « Radiology AI Deployment and Assessment Rubric (RADAR) to bring value-based AI into radiological practice », Insights into Imaging, 5 février 2024. DOI : 10.1186/s13244-023-01599-z.
  2. Fryback D. G., Thornbury J. R., « The Efficacy of Diagnostic Imaging », Medical Decision Making, juin 1991. DOI : 10.1177/0272989X9101100203.
  3. Guenoun D., Zins M., Champsaur P. et al, « French community grid for the evaluation of radiological artificial intelligence solutions (DRIM France Artificial Intelligence Initiative) », Diagnostic and Interventional Imaging, 23 septembre 2023. DOI : 10.1016/j.diii.2023.09.002.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

30 Déc

12:30

L'obésité de classe 1 (IMC = 30-34,9) n'a pas été associée à des complications supplémentaires lors de l'insertion percutanée par un radiologue interventionnel d'un cathéter péritonéal de dialyse, dans une étude rassemblant 125 patients.

7:30

La présence de signal élevé généralisé, bilatéral et symétrique dans la substance blanche observée en IRM sur une séquence dSIR, est un marqueur potentiel pour la reconnaissance de changements secondaires dans le cerveau des patients qui présentent des symptômes persistants après un traumatisme cérébral. Étude.
29 Déc

16:41

Sonoscanner, fabricant français d’échographes, annonce avoir livré 150 échographes ultraportables à des centres médicaux ukrainiens. Une opération dans le cadre du Fonds de soutien aux infrastructures critiques et aux secteurs prioritaires de l’économie ukrainienne porté par la Direction générale du Trésor français.

12:39

Après avoir partagé trois dîners sur une période de 6 mois, les radiologues participant à une étude présentée dans Academic Radiology ont vu leur score de burn-out diminuer et leur satisfaction professionnelle s'améliorer à long terme.

7:36

Docteur Imago

GRATUIT
VOIR