Évaluation de l'IA
Un nouveau cadre d’évaluation proposé pour juger de la valeur ajoutée d’une IA en radiologie
Basé sur une évaluation en sept niveaux, le nouveau cadre d'évaluation RADAR s'inspire du modèle hiérarchique de Fryback et Thornsbury d'évaluation de l'efficacité des examens d'imagerie diagnostique. © Boverhof et al, Insights into Imaging | CC BY 4.0 DEED
Il vous reste 50% de l’article à lire
Docteur Imago réserve cet article à ses abonnés
Vous avez déjà un compte ? Se connecter
- Tous les contenus « abonnés » en illimité
- Le journal numérique en avant-première
- Newsletters exclusives, club abonnés
Abonnez-vous !
Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique
23 €
par mois
Auteurs
François Mallordy
Bibliographie
- Boverhof B.-J., Redekop W. K., Bos D. et al, « Radiology AI Deployment and Assessment Rubric (RADAR) to bring value-based AI into radiological practice », Insights into Imaging, 5 février 2024. DOI : 10.1186/s13244-023-01599-z.
- Fryback D. G., Thornbury J. R., « The Efficacy of Diagnostic Imaging », Medical Decision Making, juin 1991. DOI : 10.1177/0272989X9101100203.
- Guenoun D., Zins M., Champsaur P. et al, « French community grid for the evaluation of radiological artificial intelligence solutions (DRIM France Artificial Intelligence Initiative) », Diagnostic and Interventional Imaging, 23 septembre 2023. DOI : 10.1016/j.diii.2023.09.002.
Discussion
Aucun commentaire
Commenter cet article