Lecture des mammographies

Un réentraînement local par transfer learning améliore les performances d’un algorithme développé aux États-Unis

icon réservé aux abonnésArticle réservé aux abonnés
Le 15/07/24 à 7:00

Cette étude rétrospective réalisée par des chercheurs australiens avait pour objectif d’évaluer les difficultés à rendre ces modèles d’apprentissage profond généralisables et réplicables (photo d'illustration). D. R.

En utilisant l’apprentissage par transfert (transfer learning), des chercheurs australiens sont parvenus à améliorer les performances sur les données locales d’un modèle d’apprentissage profond entraîné à l’université de New-York sur des données étasuniennes pour le dépistage du cancer du sein. Ils présentent les résultats de leurs travaux dans le revue Radiology: Artificial Intelligence [1]

Trois approches

Pour leur étude rétrospective, ils ont utilisé les examens de mammographie de patientes présentant des lésions prouvées par biopsie ou pathologie chirurgicale, et ceux de cas témoins appariés selon l’âge, réalisés dans le cadre d’un programme public de dépistage par mammographie numérique dans la région d’Australie-Méridionale. Ils ont appliqué l’algorithme new-yorkais à ces données en utilisant trois approches : sans réentrainement, avec réentraînement à partir de zéro et avec réentraînement selon la méthode d’apprentissage par transfert.

Des performances plus proches de l’origi

Il vous reste 59% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Solenn Duplessy

Bibliographie

  1. Condon J. J. J., Trinh V., Hall K. A. et al, « Impact of Transfer Learning Using Local Data on Performance of a Deep Learning Model for Screening Mammography », Radiology: Artificial Intelligence, mai 2024, vol. 6, n° 4. DOI : 10.1148/ryai.230383.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

21 Fév

13:40

Selon une étude publiée dans Radiology, un algorithme d’apprentissage profond disponible dans le commerce peut permettre des examens IRM de l’épaule de bonne qualité en sept minutes.

7:37

Le parlement a adopté définitivement le budget 2025 de la Sécurité sociale ce 17 février. Il prévoit une hausse des dépenses d’Assurance maladie de 3,4 %, pour atteindre un montant de 265 milliards d’euros.
20 Fév

16:01

L’imagerie des paramètres d’atténuation par ultrasons peut être utilisée pour le dépistage clinique afin d’évaluer la prévalence de la MASLD chez les patients en surpoids ou obèses et de suivre de manière dynamique la progression de la maladie, conclut une étude publiée dans Clinical radiology.

13:31

Le modèle de langage appelé Axpert démontre un potentiel de marquage automatique de l’entérocolite nécrosante sur les comptes-rendus de radiographie abdominale infantile. Cette méthode de marquage peut ainsi servir de cadre pour d’autres modalités d’imagerie et maladies chez les enfants, et les maladies rares chez l’adulte, suggère une étude publiée dans JAMIA Open.
Docteur Imago

GRATUIT
VOIR