Lecture des mammographies

Un réentraînement local par transfer learning améliore les performances d’un algorithme développé aux États-Unis

icon réservé aux abonnésArticle réservé aux abonnés
Le 15/07/24 à 7:00

Cette étude rétrospective réalisée par des chercheurs australiens avait pour objectif d’évaluer les difficultés à rendre ces modèles d’apprentissage profond généralisables et réplicables (photo d'illustration). D. R.

En utilisant l’apprentissage par transfert (transfer learning), des chercheurs australiens sont parvenus à améliorer les performances sur les données locales d’un modèle d’apprentissage profond entraîné à l’université de New-York sur des données étasuniennes pour le dépistage du cancer du sein. Ils présentent les résultats de leurs travaux dans le revue Radiology: Artificial Intelligence [1]

Trois approches

Pour leur étude rétrospective, ils ont utilisé les examens de mammographie de patientes présentant des lésions prouvées par biopsie ou pathologie chirurgicale, et ceux de cas témoins appariés selon l’âge, réalisés dans le cadre d’un programme public de dépistage par mammographie numérique dans la région d’Australie-Méridionale. Ils ont appliqué l’algorithme new-yorkais à ces données en utilisant trois approches : sans réentrainement, avec réentraînement à partir de zéro et avec réentraînement selon la méthode d’apprentissage par transfert.

Des performances plus proches de l’origi

Il vous reste 59% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Solenn Duplessy

Voir la fiche de l’auteur

Bibliographie

  1. Condon J. J. J., Trinh V., Hall K. A. et al, « Impact of Transfer Learning Using Local Data on Performance of a Deep Learning Model for Screening Mammography », Radiology: Artificial Intelligence, mai 2024, vol. 6, n° 4. DOI : 10.1148/ryai.230383.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

17 Oct

15:09

L’IRM mammaire multiparamétrique aide à évaluer les calcifications mammographiques BI-RADS de catégorie 4a/4b sans biopsie. Les caractéristiques DWI ou IRM quantitative peuvent ne pas améliorer davantage les performances diagnostiques, suggère une étude publiée dans European journal of radiology.

13:13

Les biopsies préopératoires à l’aiguille chez les patients qui subissent une intervention chirurgicale pour un cancer du poumon sont associées à un risque accru de récidive du cancer, selon une étude publiée dans Radiology.

7:09

En Irlande, une analyse multimodale complète des tendances de l’imagerie diagnostique adulte a été réalisée entre 2018 et 2023 révélant des augmentations récentes significatives de l’utilisation du scanner et de l’IRM (respectivement de 27 % et 32,9 %). Toutefois, la radiographie est restée la modalité la plus utilisée (64,9 %). Étude.
16 Oct

13:14

EDM Imaging, distributeur français de dispositifs médicaux destinés aux hôpitaux, cliniques et cabinets libéraux, annonce l'acquisition de l’entreprise IMA-X, spécialisé dans la distribution de dispositifs pour l’imagerie médicale et la médecine nucléaire au Bénélux.  
Docteur Imago

GRATUIT
VOIR