Lecture des mammographies

Un réentraînement local par transfer learning améliore les performances d’un algorithme développé aux États-Unis

icon réservé aux abonnésArticle réservé aux abonnés
Le 15/07/24 à 7:00

Cette étude rétrospective réalisée par des chercheurs australiens avait pour objectif d’évaluer les difficultés à rendre ces modèles d’apprentissage profond généralisables et réplicables (photo d'illustration). D. R.

En utilisant l’apprentissage par transfert (transfer learning), des chercheurs australiens sont parvenus à améliorer les performances sur les données locales d’un modèle d’apprentissage profond entraîné à l’université de New-York sur des données étasuniennes pour le dépistage du cancer du sein. Ils présentent les résultats de leurs travaux dans le revue Radiology: Artificial Intelligence [1]

Trois approches

Pour leur étude rétrospective, ils ont utilisé les examens de mammographie de patientes présentant des lésions prouvées par biopsie ou pathologie chirurgicale, et ceux de cas témoins appariés selon l’âge, réalisés dans le cadre d’un programme public de dépistage par mammographie numérique dans la région d’Australie-Méridionale. Ils ont appliqué l’algorithme new-yorkais à ces données en utilisant trois approches : sans réentrainement, avec réentraînement à partir de zéro et avec réentraînement selon la méthode d’apprentissage par transfert.

Des performances plus proches de l’origi

Il vous reste 59% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Solenn Duplessy

Voir la fiche de l’auteur

Bibliographie

  1. Condon J. J. J., Trinh V., Hall K. A. et al, « Impact of Transfer Learning Using Local Data on Performance of a Deep Learning Model for Screening Mammography », Radiology: Artificial Intelligence, mai 2024, vol. 6, n° 4. DOI : 10.1148/ryai.230383.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

18 Avr

16:00

RECIST 1.1 reste la norme pour évaluer la réponse tumorale, notamment pour les métastases hépatiques après traitement systémique. Les modifications au scanner et en IRM suggérant une nécrose, une fibrose, des calcifications et une hémorragie, peuvent être utilisées comme indicateurs supplémentaires de la réponse tumorale.

15:44

Des chercheurs ont examiné pour la première fois les tendances temporelles chez les patients subissant régulièrement un examen de scanner. Ces derniers ont observé une modification des pratiques d’imagerie depuis 2020, avec un taux d’examens récurrents en baisse après 2020 et une dose efficace médiane qui a augmenté après 2020 par rapport à avant 2020. (Étude).

13:15

L'arrêté du 11 avril 2025 renouvelle l'inscription du stent retriever ERIC®, fabriqué par la société MICROVENTION Europe, sur la liste des produits et prestations remboursables (LPPR) prévue à l'article L. 165-1 du Code de la sécurité sociale.

7:57

Le scanner du centre hospitalier de La Ferté-Macé (Orne) sera mis en service le jeudi 24 avril 2025, a annoncé le groupement hospitalier de territoire des Collines de Normandie dans un communiqué publié le 14 avril. Source : Ouest France.
Docteur Imago

GRATUIT
VOIR