Lecture des mammographies

Un réentraînement local par transfer learning améliore les performances d’un algorithme développé aux États-Unis

icon réservé aux abonnésArticle réservé aux abonnés
Le 15/07/24 à 7:00

Cette étude rétrospective réalisée par des chercheurs australiens avait pour objectif d’évaluer les difficultés à rendre ces modèles d’apprentissage profond généralisables et réplicables (photo d'illustration). D. R.

En utilisant l’apprentissage par transfert (transfer learning), des chercheurs australiens sont parvenus à améliorer les performances sur les données locales d’un modèle d’apprentissage profond entraîné à l’université de New-York sur des données étasuniennes pour le dépistage du cancer du sein. Ils présentent les résultats de leurs travaux dans le revue Radiology: Artificial Intelligence [1]

Trois approches

Pour leur étude rétrospective, ils ont utilisé les examens de mammographie de patientes présentant des lésions prouvées par biopsie ou pathologie chirurgicale, et ceux de cas témoins appariés selon l’âge, réalisés dans le cadre d’un programme public de dépistage par mammographie numérique dans la région d’Australie-Méridionale. Ils ont appliqué l’algorithme new-yorkais à ces données en utilisant trois approches : sans réentrainement, avec réentraînement à partir de zéro et avec réentraînement selon la méthode d’apprentissage par transfert.

Des performances plus proches de l’origi

Il vous reste 59% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Solenn Duplessy

Bibliographie

  1. Condon J. J. J., Trinh V., Hall K. A. et al, « Impact of Transfer Learning Using Local Data on Performance of a Deep Learning Model for Screening Mammography », Radiology: Artificial Intelligence, mai 2024, vol. 6, n° 4. DOI : 10.1148/ryai.230383.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

19 Fév

16:01

La reconstruction par apprentissage profond d'IRM synthétiques du genou pourrait aider à identifier la dégénération précoce du cartilage, et ne montre pas de différence avec les images T2 conventionnelles, selon une étude parue dans Insights into Imaging.

14:08

Le ministère de la Santé annonce le lancement de la plateforme SIRANo (Système d’interrogation des projets de recherche appliquée en santé) conçue pour simplifier la gestion et le suivi des projets financés dans le cadre des appels à projets de recherche appliquée en santé.

7:30

18 Fév

16:14

L'entreprise australienne Micro-X annonce le développement de son mini scanner mobile pour les soins en milieu rural dans le cadre du programme américain PARADIGM.
Docteur Imago

GRATUIT
VOIR